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Abstract—An accurate assessment of heart function is crucial
in diagnosing the cardiovascular disease. One way to evaluate or
detect the disease can use echocardiography, by detecting systolic
and diastolic volumes. However, manual human assessments can
be time-consuming and error-prone due to the low resolution of
the image. One way to detect heart failure on echocardiogram is
by segmenting the left ventricle on the echocardiogram using
deep learning. In this study, we modified the MultiResUNet
model for left ventricle segmentation in echocardiography images
by adding Atrous Spatial Pyramid Pooling block and Attention
block. The use of multires blocks from MultiResUnet is able to
overcome the problem of multi-resolution segmentation objects,
where the segmentation objects have different sizes. This problem
has similar characteristics to echocardiographic images, where
the systole and diastole segmentation objects have different sizes
from each other. Performance measure were evaluated using
Echonet-Dynamic dataset. The proposed model achieves dice
coefficient of 92%, giving an additional 2% performance result
compared to the MultiResUNet.

Index Terms—Heart Function, Echocardiography, Semantic
Segmentation, Deep Learning

I. INTRODUCTION

Cardiovascular disease is a dangerous disease with the high-
est mortality rate in the world [1]. In detecting the disease, an
accurate assessment of heart function is crucial in diagnosing
the disease. One way to evaluate or detect the disease is to
use echocardiography, i.e. by detecting systolic and diastolic
volumes [2]. However, manual human assessments can be
time-consuming and error-prone due to the low resolution
of the image. Human assessment of cardiac function focuses
on taking a limited sample of the cardiac cycle and has
considerable inter-observer variability. It is very important for
automatic detection to be carried out so that checking is carried
out effectively and reduces errors.

One way to detecting heart failure on echocardiogram is by
segmenting the left ventricle on the echocardiogram using deep
learning [2]. U-net is a neural network architecture designed
primarily for image segmentation. The basic structure of a
U-net architecture consists of two paths. The first path is
the encoder path, which is similar to a regular convolution
neural network (CNN) and provides classification information.
The second is the decoder path, consisting of up-convolutions
and concatenations with features from the encoder path. This

expansion allows the network to learn localized classification
information. In addition, the expansion path also increases
the resolution of the output, which can then pass to a final
convolutional layer to create a fully segmented image. U-
Net architecture and its development has been widely used
to segment biomedical images such as liver, skin, and blood
vessels. A number of studies show that this model has a good
performance in segmentation task [4].

To support research related to cardiac function assess-
ment, an echocardiographic image dataset is available called
Echonet-Dynamic, which consists of 10036 video echocardio-
grams and annotations from experts. Figure 1 is an example
of an image in Echonet-Dynamic, which consists of a series
of videos visualizing the heart from different angles and
positions. This dataset has been used to segment the left
ventricle using the DeeplabV3-Resnet50 model [3].

Fig. 1. Echocardiographic images in Echonet-Dynamic Dataset [2]

One way to assess cardiac function is to measure the Left
Ventricle Ejection Fraction (LVEF). LVEF is obtained from
the calculation between End Systolic Volume (ESV) and End
Diastolic Volume (EDV), which is calculated by (EDV - ESV)
/ EDV and expressed as a ratio. Cardiac function is considered
healthy if the LVEF value is more than 50 [2]. Figures 1(a)
and 1(b) are examples of healthy cardiac function with an
LVEF value of 78, where there is a significant volume change
between EDV at 1(a) and ESV at 1(b). In contrast to 1(a) and
1(b), figures 1(c) and 1(d) are examples of unhealthy cardiac
function with an LVEF value of 24. There was no large volume
difference between the EDV at 1(c) and the ESV at 1(d).

In segmenting medical images using U-Net-based architec-
ture, Ibtehaz and Rahman [5] made modifications to the U-
Net architecture by replacing the main block in U-Net into a
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multi-residual block. With multi-residual block, the model is
able to overcome the problem of multi-resolution objects or
segmentation objects with different scales or sizes. The model,
named MultiResUNet, also replaces the skip connection in
U-Net with a residual path to overcome the semantic gap
problem between the encoder and the decoder. The model
produces a significant jaccard index value compared to the
U-Net architecture, by testing five different types of medical
datasets. Jaccard index is defined as the ratio of the intersection
and union of the two sets [5].

Fig. 2. The architecture of the MultiResUNet Model (Reproduced).

Jha et al. [6] modified the U-Net architecture by replacing
the main U-Net block into a residual block added with Squeeze
and Excitation Net. In the decoder, an attention block is
added to each residual block which is claimed to be able
to increase the performance of the model. The study also
added the Atrous Spatial Pyramid Pooling block as a bridge
between the encoder and decoder. The addition of these blocks
is considered capable of filtering information at different
scales. The study resulted in a significant performance increase
compared to previous studies, by obtaining a dice coefficient
value of 0.81 in the Polyp dataset.

Amer et al. [7] modify the U-Net model by making changes
to the main block which is changed to the residual block and
Squeeze and Excitation Net. The study also added a dilated
convolution block which is claimed to be able to overcome
the problem of different left ventricular segmentation objects.
The model is used to segment the left ventricle of the heart

on echocardiography images on the CAMUS dataset. The
study achieved a dice coefficient value of 0.95 and provides
improved performance compared to the U-Net architecture.

In this study, we modified the MultiResUNet model for
left ventricle segmentation in echocardiography images by
adding features from the previously described related studies.
The addition of features is based on research conducted by
[6] and [7] in using dilated convolution to filter features on
different segmentation objects and using attention blocks to
improve model performance. We chose MultiResUNet as the
main architecture in this study because the model uses multires
block that is made to overcome the problem of segmenting
objects that have different resolutions. This has similarities
with echocardiography images, where the size of the left
ventricle object varies. The main contributions of this study
are summarized as follows:
• Add the Attention Block in the decoder and the ASPP

Block as part of the bridge between encoder and decoder.
• Change the activation function to SELU activation func-

tion.
• Compare the modified model to original model and

several different models on Echonet-dynamic Dataset.

II. PROPOSED MODEL

The main architecture in this research is the MultiResUNet
architecture. The use of multires blocks is able to overcome
the problem of multi-resolution segmentation objects, where
the segmentation objects have scale variations or different
sizes. This problem also has similar characteristics to the
systole and diastole object in echocardiographic images, where
segmentation objects have different sizes from each other. In
general, the model architecture proposed in this study is to add
ASPP blocks and Attention blocks to the MultiResUNet model
architecture. Figure 3 shows the architecture in this study, the
changes made compared to the MultiResUNet architecture in
Figure 2 are the addition of an ASPP block to the bridge and
an attention block before upsampling on each multires block
in the decoder.

A. Multires Block

CNN has a limited tolerance for scale variations [8]. This
will affect the segmentation results. One way to deal with
scale variations on CNN in U-Net architecture is to replace the
convolutional layers with inception like blocks from inception
net [5]. Multires block, that is built to solve scale variations
problems in object segmentation is inspired by inception net,
where the block uses three different convolution kernels,
namely 3x3, 5x5, and 7x7. In multires block, Ibtehaz and
Rahman [5] replace the 5x5 and 7x7 kernels with 3x3 kernels
which have different filters and take the outputs from the three
convolutional blocks and concatenate them together to extract
the spatial features from different scales. In controlling the
number of filters in a multires block, we need a parameter W
which contains the coefficient value multiplied by the filter
at each layer level. The filter values are 32, 64, 128, 256,
512 respectively at the respective layer levels. Determining the
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Fig. 3. The architecture of the Proposed Model.

filter value for each kernel in multires is done by assigning W
6

to the first 3x3, W
3 to the second 3x3, and W

2 to the third 3x3.
For example, multires block 1 has a filter value of 32. Thus,
the filter values for each kernel on multires block 1 are 5.33
in the first 3x3, 10.67 in the second 3x3, and 16 in the third
3x3. Multires block use 1x1 convolutional layers which allow
the model to comprehend some additional spatial information.

Fig. 4 is an illustration of the multires block structure.
Where the multires block concatenates the output of three 3x3
convolution blocks with different filter values and also uses a
residual connection with 1x1 convolution layer

Fig. 4. Multires block structure illustration.

B. ResPath

The use of a skip connection between the encoder and
decoder is considered to cause a semantic gap, Ibtehaz and
Rahman [5] replaces the skip connection between the encoder
and decoder with a residual path. Residual path is a combi-
nation of feature maps from encoder to decoder. The input
from the encoder will pass through the convolution layer with
residual connections. A 3x3 filter is used in the convolution
layer and a 1x1 filter is used in the residual connection as
illustrated in Fig. 5.

Fig. 5. Respath block structure illustration.

C. SELU Activation Function

The activation function used in MultiResUNet is ReLU
(Rectified Linear Unit). One of the advantages of ReLU is the
fast calculation speed because it does not contain complicated
operations when the input is greater than zero. However, there
is a potential problem when the input is less than or equal to
zero because the output will be equal to zero and make the
neuron not learn [9].

To solve this problem, this study uses SELU as an activation
function, as shown in (1).

SELU(x) =

{
x if x > 0

αex − α if x ≤ 0
(1)

while α ≈ 1.6732632423543772848170429916717 [10]

D. ASPP

The use of ASPP makes it possible to extract features from
different scales. Atrous convolution allows controlling the
field-of-view for capturing multi-scale information precisely.
With the same set of dilation rates and functions as [6], in
this study, ASPP was applied as part of the bridge between
the encoder and decoder, where ASPP was used to overcome
the problem of the different size of the systole and diastole
segmentation objects by providing multi-scale information.

E. Attention

Attention mechanism is one of the important concepts in
neural networks that has been applied to various domains
and has been proven to improve model performance [11]. In
segmentation problems using U-net, Jha et al. [6] use attention
blocks on the decoder that is connected to the encoder so
that the encoder can encode all the information from the
polyp image into a vector with fixed dimensions. An important
advantage of using the attention mechanism is that it can be
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used with a variety of input sizes and can improve model
performance by allowing the model to focus on important
areas of the feature map [6]. In this study, we add an attention
block to the decoder connected to the encoder as in [6] so
that the model is able to capture the left ventricle area more
effectively.

III. EXPERIMENT

A. Dataset

The dataset used in this study is from the Echonet-Dynamic
dataset. Echonet-Dynamic contains 10036 videos measuring
112x112 pixels and will be extracted into frames based on
the available masks, which are then used for training and
evaluation of the proposed model. The process of extracting
video into frames based on available masks is based on
research conducted by Ouyang et al. [3]. In general, Echonet-
Dynamic provides data distribution for training, validation,
and testing with 7465, 1289, and 1282 videos respectively.
This study uses this setup without changing the composition
of each data.

B. Training Process

The training model that has been built is carried out in the
same way based on [3]. Frames and masks for training data
are created based on the available masks.

The training process is carried out using Nvidia Tesla T4
with 15GB of memory. In general, the following hyperparam-
eters are defined for training the proposed model:
• Epoch: 50
• Batch Size: 16
• Optimizer: Adam
• Learning Rate: 1e-3
• Loss Function: Binary Cross Entropy

In one iteration, in addition to calculating the loss value, the
intersection and union between the prediction results and the
mask are also calculated to get the dice coefficient value.

C. Evaluation

In conducting the evaluation, the resulting segmentation
results will be measured using the calculation of the dice
coefficient. The Dice Coefficient measures the overlap between
the segmentation results and the mask or ground truth [12].
For example, x is the segmentation result area, and y is the
mask area, then the Dice Coefficient measure is defined as
follows:

DC(x, y) =
2(x ∩ y)
x+ y

(2)

In measuring the performance of the model, it will calculate
the value of twice the number of pixels in the intersecting
image divided by the number of the two images. The greater
the value of the dice coefficient, the closer the segmentation
results to the mask or ground truth. The model will also
be compared with MultiResUNet and DeeplabV3-Resnet50 in
[3].

IV. RESULTS AND DISCUSSION

In evaluating the results of this study, the measurement
used to evaluate the results of segmentation is using the dice
coefficient. Furthermore, the model that has been trained is
tested on the test data and compared with the MultiResUNet
and DeeplabV3-Resnet50 models. The MultiResUNet model
was previously trained and tested on the Echonet-Dynamic
dataset. While the test results on the DeeplabV3-Resnet50
model are taken based on [3]. Because the preprocessing of
the data is done in the same way as [3], the test data used in
the three models are exactly the same.

Table I shows the proposed model has been able to provide
increased performance compared to the previous research
models, namely MultiResUNet, by producing a dice coefficient
value of 0.9206 in the overall test object compared to the
MultiResUNet model which produces a dice coefficient value
of 0.9066.

TABLE I
COMPARISON OF PROPOSED MODEL TEST RESULTS ON THE OVERALL

DATA SEGMENTATION WITH MULTIRESUNET

Model Name Dice Coefficient (Overall)
MultiResUNet 0.9066
Proposed Model 0.9206

Table II shows that the proposed model produces the best
dice coefficient on the systole and diastole object tests com-
pared to the MultiResUNet and Deeplabv3-Resnet50 models,
which produces the value of 0.9045 on the systole object and
0.9306 on the diastole object. This is better than Deeplabv3-
Resnet50 which produces the value of 0.903 on the systole
object and 0.927 on the diastole object, also MultiResUNet
which produces the value of 0.8865 on the systole object and
0.9193 on the diastole object.

TABLE II
COMPARISON OF PROPOSED MODEL TEST RESULTS ON SYSTOLE AND

DIASTOLE SEGMENTATION WITH OTHER MODELS

Model Dice Coefficient
Name Systole Diastole

Deeplabv3-Resnet50 0.903 0.927
MultiResUNet 0.8865 0.9193

Proposed Model 0.9045 0.9306

In the test on the whole object, the value between the
proposed model and the results on [3] cannot be compared
because in this study there is no information about the results
of the overall object test.

For other scenarios, we test the proposed model by remov-
ing ResPath or changing ResPath to default skip connection.
Table III shows the dice coefficient value of the proposed
model with ResPath and the proposed model without ResPath.
The proposed model with ResPath shows better results. This
is because ResPath is able to reduce the unbalanced state or
difference between the encoder and decoder in the model.

Figure 6 shows the segmentation results of the three models.
We can see in Figure 6(e) that the proposed model produces
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TABLE III
COMPARISON OF TEST RESULTS BETWEEN PROPOSED MODEL WITH

RESPATH AND PROPOSED MODEL WITHOUT RESPATH

Model Name Dice Coefficient (Overall)
Without ResPath 0.9117
With ResPath 0.9206

results that are more precise to ground truth than other models,
with the Deeplabv3-Resnet50 model tends to produce smaller
results.

Fig. 6. Qualitative results of the three models using the Echonet-Dynamic
dataset, (a) Input image, (b) Ground Truth, (c) Deeplabv3-Resnet50 model
results, (d) MultiResUnet model results, (e) Proposed model results

V. CONCLUSION

In this study, we modified the MultiResUNet architecture
by adding an ASPP block and an attention block for more
accurate segmentation of left ventricular in echocardiogram.
Models were trained and evaluated using the echonet-dynamic
dataset. The segmentation results are then evaluated using
the Dice Similarity Coefficient and obtain an accuracy value
of 0.9206. These results were then compared with the Mul-
tiresunet and Deeplabv3-Resnet50 models using the same
dataset. From the comparison results, in general, the proposed
model outperforms the Multiresunet and Deeplabv3-Resnet50
models.
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