
Collapsed Building Detection Using Residual 
Siamese Neural Network On LiDAR Data

Mgs M Luthfi Ramadhan1, Grafika Jati1, Machmud Roby Alhamidi1, Riskyana Dewi Intan P1, Muhammad Hafizhuddin Hilman2, 

and Wisnu Jatmiko1   

1Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia 
2Faculty of Engineering & IT, The University of Melbourne, Melbourne, Australia  

mgs.m01, grafika.jati51, machmud.robi, riskyana.dewi{@ui.ac.id}, muhammad.hilman@unimelb.edu.au, wisnuj@cs.ui.ac.id     

Abstract—Evaluation of buildings is crucial to aid 

emergency response but it costs a lot of resources to do it 

manually. Many approaches have been proposed to automate 

the process using artificial intelligence. Most of them, use 

handcrafted feature, difference calculation between pre-disaster 

and post-disaster feature, and a classifier model separately. In 

this study, the process from feature extraction, feature 

difference and classification are represented by a single model 

which is siamese neural network. Furthermore, we modify 

siamese neural network by implementing residual connection 

for feature concatenation purposes. We evaluate our model on 

Kumamoto Prefecture earthquake LiDAR data. The result 

shows the modified model is able to outperform the baseline 

model with Accuracy and F-measure of 90.91% and 79.28% 

respectively. 

Keywords— earthquake, siamese neural network, deep 

learning, collapsed building assessment 

I. INTRODUCTION

Buildings are one of the most crucial things for humans to 
live. However, buildings are very vulnerable to disasters such 
as earthquakes which make them seriously damaged or even 
completely collapsed [1]. Thus, it is important to immediately 
observe building conditions after an earthquake to aid in 
emergency response and rescue operations [2, 3]. Much of the 
observing process is done manually by doing a field survey 
which is costly and time-consuming. Moreover, a field survey 
cannot be done in some cases due to broken or blocked roads 
caused by the earthquake [1, 4, 5, 6]. As an alternative, remote 
sensing can be used to observe the affected area. Although 
visual observation can assess building damage from remote 
sensing data, it's still cost a lot of resource and time to observe 
the affected area [7]. As a result, an automated damage 
detection system that is accurate and usable is required [8, 
9]. 

Much research has been done to automate the process of 
assessing building damage through remote sensing data 
using artificial intelligence. For example, Miura et 
al. [10] conducted research to classify collapsed 
buildings in Kumamoto based on post-earthquake images 
using CNN. The challenge of assessing building damage in 
Kumamoto is that its citizens tend to cover their rooftop 
with a blue tarp as a coping mechanism. This habit makes 
it harder to assess the building. Miura et al. managed to get 
an accuracy of 95% and concluded that most of the blue 
tarp-covered buildings are moderately damaged. Min ji 
[1] using pre-earthquake and post-earthquake images, 
examined CNN feature and GLCM feature to classify 
collapsed buildings in Port-au-Prince. They concatenate 
features from both pre-earthquake and post-earthquake 
images. They then classify the obtained feature using 
Random forest classifier (RDF). They concluded that 
CNN-RDF performs better than GLCM-RDF with an 

accuracy of 87%. Hajeb et al. [4] use multimodal SAR and 
LiDAR data to classify building damage. Both SAR and 
LiDAR data are acquired before and after the mainshock of 
the Kumamoto earthquake occur. They rasterize the LiDAR 
data and export it as DSM. They then use DSM difference, 
GLCM difference, and coherence difference (SAR data) as 
features. With the resulting feature, they classify it using SVM 
and RDF. They concluded that SVM with DSM difference 
feature performs better with an accuracy of 87%. Moya et al. 
[3] use pre-earthquake and post-earthquake LiDAR data to
classify building damage. Just like Hajeb et al. [4], they
transform LiDAR data into DSM. They use DSM difference,
standard deviation, and correlation coefficient as features and
classify it using SVM. They got an accuracy of 93%. As an
addition, Zhang [11] utilize siamese neural network to detect
building structural change. The two identical sub-networks of
siamese neural network receive two different inputs which are
the difference between old DSM and new DSM and R, G, B
channels from the orthoimage. As a comparison, they stacked
the old DSM, new DSM, R, G, and B as a single tensor to train
a CNN model. They concluded that the Siamese neural
network performs better than CNN with an accuracy of 76%.

However, in [11] study, the DSM difference is calculated 
outside of siamese neural network resulting in a lack of 
difference feature whereas this difference feature is the most 
essential factor in deciding whether a building is collapsed or 
not [3]. Thus, in this study we utilize siamese neural network 
containing subtraction layer inside the model to calculate 
meaningful difference feature on a higher dimension. 
Furthermore, we modify the model by implementing residual 
connections to concatenate features from different levels. By 
using residual connections, we get even richer features so that 
we can analyze the difference between the two data better, so 
the model will produce better performance. Therefore, the 
novelty of this study is that we develop a siamese neural 
network that takes into account features from different levels 
to calculate the similarity or difference between the two 
inputs. The remainder of this paper is organized as follows, 
section 2 explaining how the data is obtained and processed. 

Fig. 1. Study area (inside the green polygon) 
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Section 3 describes the siamese neural network method that 
we proposed. Section 4 is the results and discussion. Finally, 
section 5 concludes the paper. 

II. DATA

In this study, we use Kumamoto Prefecture earthquake 
LiDAR data. Most of the heavily damaged buildings are 
located around Mashiki town [4, 12]. Thus, in this study we 
only use the data at Mashiki town. To be specific, it is located 

between Route 28 and Akizu river as shown in figure 1. This 
LiDAR data can be downloaded from Open Topography [13, 
14]. It consists of two point clouds namely pre-earthquake and 
post-earthquake. The ground truth for each building is not 
included in the data, thus we annotate each building by 
ourselves. We considered 7 damage rates from the 
Architectural Institute of Japan (AIJ) namely D0, D1, D2, D3, 
D4, D5, and D6, which then reduced to be Non-collapsed and 
collapsed as shown in table I [4, 10].  

The annotation is done by using CloudCompare. With the 
help of Google Earth, we extract each building by carefully 
creating polygons on both pre-earthquake and post-earthquake 
point clouds. We then annotate the data by visualizing the 
point clouds and observing them on Google Earth. Figure 2 
shows the example of non-collapsed and collapsed building 
point clouds.  

Most machine learning and deep learning algorithms 
expect the input to be fixed while each building has a different 
number of point. In the case of disaster assessment, the point 
cloud should not be sampled because sampling a point cloud 

a b c d 

Fig. 2.  Point cloud and google street view. A, b, c, and d representing pre-earthquake point cloud, pre-earthquake street view, post-earthquake point 
cloud, and post-earthquake street view respectively. The first row is an example of a non-collapsed building while the second and third are collapsed 
buildings. 

TABLE I. AIJ DAMAGE RATE 

No Picture Label Description Used Label 

1 D0 No damage Non-
Collapsed 

2 D1 Hair-line cracks 
in walls 

Non-
Collapsed 

3 D2 Falls of plaster 
of walls; 
Detachment of 
roof tiles 

Non-
Collapsed 

4 D3 Significant 
incline of 
columns; 
Serious failure 
of beams and 
walls 

Non-
Collapsed 

5 D4 Significant 
incline of 
columns; 
Serious failure 
of beams and 
walls 

Non-
Collapsed 

6 D5 Partial 
collapsed 

Collapsed 

7 D6 Complete 
collapsed 

Collapsed 

Fig. 3.  Pre-earthquake and post-earthquake DSM of non-collapsed and 
collapsed buildings 
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will cause several points to be removed, resulting in different 
point cloud patterns between the same non-collapsed building. 
Thus, in this study, we transform the point cloud into DSM, as 
shown in figure 3.  

As many as 1.011 buildings have been annotated. 750 of 
which are non-collapsed while the remaining 261 are 
collapsed. Due to imbalanced data, we conducted a train-test-
split using the stratified method with a ratio of 75:25 for 
training and testing respectively. The Stratified split will 
equalize the ratio of non-collapsed and collapsed classes in the 
training and testing data to reduce the potential bias towards 
the resulting model.  

III. PROPOSED METHOD

In this study, we utilize Siamese neural network to classify 
collapsed or non-collapsed buildings. Siamese neural network 
was first introduced by [15] for handwritten signature 
verification. It consists of 2 sub-networks that are identical to 
each other. The two sub-networks have the same architecture 
and weight; this aims to extract features with the same weight 
for two different inputs. After extracting the features, both 
features are passed to the similarity layer to measure the 
similarity between the two. Overall this model accepts two 
inputs then produces the similarity between the two. In our 
study, the two inputs are pre-earthquake DSM and post-
earthquake DSM. As Moya [3] stated in their study, the most 
important factor in deciding whether a building is collapsed or 
not is the height difference between pre-earthquake and post-
earthquake; therefore, the Siamese neural network can be used 
for this problem. If the pre-earthquake DSM and post-
earthquake DSM are similar, the building is likely non-
collapsed, on the other hand, if the pre-earthquake DSM and 
post-earthquake DSM are not similar, the building is highly 
likely to collapsed. The similarity is measured using Euclidean 
distance.  

���, �� � �∑ ��
 � �
��

 (1) 

Equation 1 shows the formula for Euclidean distance with 
a and b representing pre-earthquake feature and post-
earthquake feature respectively. As a comparison we also 
propose element-wise subtraction as a replacement to 
euclidean distance. The element wise-subtraction works by 
subtracting each element from each feature vector 

correspondingly. Unlike euclidean distance which produces a 
scalar, element wise subtraction produces an n-dimensional 
vector. Equation 2 shows the formula for element-wise 
subtraction with a, b, and c representing pre-earthquake 
feature, post-earthquake feature, and the resulting element-
wise subtraction between both features respectively.  

�����⋮��� � �
����⋮��� � �����⋮��� (2) 

The pre-earthquake feature and post-earthquake feature 
are extracted automatically by using two identical 
convolutional neural networks. The overall baseline 
architecture is illustrated in figure 5 with each convolutional 
block illustrated in figure 6. The similarity layer which we 
mentioned inside the illustrations in figure 4, 5, and 7 is either 
a Euclidean distance or subtraction layer.  

Fig. 4.  Concatenation illustration 

Fig. 5.  Baseline siamese neural network architecture  

Fig. 6.  Convolution block illustration  

Fig. 7.  Residual siamese neural network architecture 
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To enhance the result, we modify the model by 
implementing residual connections. The residual connection 
was first introduced by He et al. [16]. It is used to propagate a 
larger gradient for the front layer so that the front layer can 
learn as fast as the deeper layer do. Simply put, it is usually 
used to build a deeper neural network and prevent vanishing 
gradient at the same time. In this study, we use the residual 
connection for feature concatenation purposes as shown in 
figure 7.  The idea behind this is to extend the number of 
features that are being fed to the similarity layer by 
concatenating the feature from the low level all the way 
through to the high-level as illustrated in figure 4. By doing 
so, the similarity layer is not only calculating the similarity of 
the high-level feature, instead, it calculating the similarity of 
the concatenation of feature from low-level to high-level. To 
ease the concatenation process, each feature map from each 

convolution block is flattened before concatenating. Equation 
3 shows the formula for concatenation where u, v, and w 
representing the resulting feature vector from each 
convolution block while x representing the resulting 
concatenation vector. The x dimension is equal to the 
summation of u dimension, v dimension, and w dimension. 
When using subtraction as similarity layer, the subtraction is 
done by subtracting each level of feature from pre-earthquake 
DSM and post-earthquake DSM correspondingly. By doing 
so, this model is not only analyzing differences in high-level 
features, instead, it analyzes the difference from low-level 
feature all the way through to the high-level feature. The result 
of this subtraction will provide more features and information 
for the output layer to make the decision whether the input 
building is collapsed or not. Thus leading to better 
classification performance. 

We implemented the model using Python programming 
language with the help of Tensorflow. The script was run in 
Google Colaboratory with NVIDIA Tesla K80 GPU and 12 
GB of RAM. We lock random seed for Tensorflow and 
Numpy with the value of 1.234 and 0 respectively. By doing 
so, it is guaranteed that each trial will have the same random 
treatment. The model is trained using Adam optimizer as 

many as 100 iterations with a learning rate of 0.001 and batch 
size of 32. 

IV. RESULT AND DISCUSSION

Four trials have been done in this study. In the first trial, 
we evaluate the baseline model with Euclidean distance layer, 
the second trial we evaluate baseline model with subtraction 
layer, the third trial we evaluate the residual model with 
Euclidean distance, and the fourth trial we evaluate the 
residual model with subtraction layer. The results of these 
trials are shown in table II. 

It can be inferred that the model with Euclidean layer both 
baseline and residual fail to converge. Both models have an f-
measure, precision, and recall of 0% which means that the 
model cannot differentiate which building is collapsed and 
which building is non-collapsed. We assume this happens due 
to the lack of feature and information provided by Euclidean 
distance for the output layer since Euclidean distance only 
produces a scalar. On the other hand, the subtraction layer is 
able to make better predictions compared to Euclidean 
distance for both baseline and residual model. The non-zero 
score of f-measure, precision, and recall are indicators that the 
model is able to differentiate which building is collapsed and 
which building is non-collapsed. This happens because the 
subtraction layer produces an n-dimensional vector which 
leads to a richer feature. The precision score of baseline model 
with subtraction layer is 100% which indicates that the model 
never mistaken  a non-collapsed building as collapsed. This 
happens due to the imbalance of data that favor the non-
collapsed class, thus the model is more likely to predicting 
non-collapsed instead of collapsed. The precision score of 
residual model with subtraction layer is lower than the 
baseline model but as an exchange, it has significant 
improvements on recall which worth the tradeoff. This means 
that the model is less biased toward the non-collapsed class 
that the model is predicting collapsed class more frequently 
than the baseline model does. 

Figure 8 shows the accuracy of these trials. The models 
with Euclidean layer have an accuracy of 74.31% which is a 
very strong indicator that the model is just straight predicting 
all testing data as non-collapsed since 74.31% is a ratio of non-
collapsed class in testing data. On the other hand, models with 
subtraction layer have greater accuracy, it indicates that there 
are several collapsed building that is predicted correctly. 
When using subtraction layer, the residual connections 
provide more feature for subtraction layer which result on 
even richer difference feature that calculated from several 
levels of feature. This makes output layer easier to do 
classification, thus it has better classification performance. 
However, the residual model with subtraction layer still 
mistaken a collapsed building as a non-collapsed building a 
lot as shown in figure 9 which leads to a low recall score. Just 
like what happened to our baseline model, it might be caused 

TABLE II. EXPERIMENT RESULT OF PROPOSED METHOD 

COMPARED WITH BASELINE 

Model Precision Recall F-Measure 

Baseline 
(Euclidean) 

0% 0% 0% 

Baseline 
(Subtraction) 

100% 52.31% 68.69% 

Residual 
(Euclidean) 

0% 0% 0% 

Residual 
(Subtraction) 

95.65% 67.69% 79.28% 

��⃗ � ���, ��, … , �
�
�⃗ � ���, ��, … , �
�
���⃗ � ���, ��, … , �
�

�⃗ � ���⃗ , �⃗, ���⃗ �
(3) 

Fig. 8.  Accuracy of proposed method compared with baseline 
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by the imbalanced class in the training set that favors the non-  
collapsed class. Thus, further research needs to be done to 
improve the classification performance such as oversampling 
the minority class so that the model less biased towards the 
majority class. Another probable improvement is by 
implementing cost-sensitive learning that will allow the model 
to pay more attention to the minority class. 

V. CONCLUSION

This study conducted a collapsed building detection using 
residual siamese neural network on LiDAR data. The 
Euclidean layer on siamese neural network is not optimally 
used in the case of classification. We assume it happens due 
to the lack of features provided by Euclidean distance since it 
only produces a scalar, as an alternative this research replaces 
the layer into an element-wise subtraction layer. We also study 
the impact of implementing residual connections on the 
siamese neural network. The experimental results show that 
the implementation of the residual connection is able to 
improve the classification results. However, the residual 
model with subtraction layer still mistaken a collapsed 
building as a non-collapsed building a lot as shown in figure 
9. Further improvement needs to be done such as
oversampling the minority class or implementing cost-
sensitive learning.
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