IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 December 2023, accepted 27 January 2024, date of publication 1 February 2024, date of current version 8 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361287

== RESEARCH ARTICLE

Building Damage Assessment Using Feature
Concatenated Siamese Neural Network

MGS M. LUTHFI RAMADHAN 1, GRAFIKA JATI'-2, AND WISNU JATMIKO !, (Senior Member, IEEE)

!Faculty of Computer Science, University of Indonesia, Depok 16424, Indonesia
2Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 40126 Bologna, Italy

Corresponding author: Mgs M. Luthfi Ramadhan (mgs.m01 @ui.ac.id)
This work was supported by Publikasi Terindeks Internasional (PUTI) Q1 from Universitas Indonesia for research project entitled

“Asesmen Kerusakan Bangunan Akibat Bencana Gempa Bumi Menggunakan Residual Siamese Neural Network Pada Data Lidar”
under Grant NKB-395/UN2.RST/HKP.05.00/2022.

ABSTRACT Fast and accurate post-earthquake building damage assessment is an important task to do to
define search and rescue procedures. Many approaches have been proposed to automate this process by
using artificial intelligence, some of which use handcrafted features that are considered inefficient. This
research proposed end-to-end building damage assessment based on a Siamese neural network. We modify
the network by adding a feature concatenation mechanism to enrich the data feature. This concatenation
mechanism creates different features based on each output from the convolution block. It concatenates them
into a high-dimensional vector so that the feature representation is more likely to be linearly separable,
resulting in better discrimination capability than the standard siamese. Our model was evaluated through
three experimental scenarios where we performed classification of G1 or G5, G1-G4 or G5, and all the five
grades of EMS-98 building damage description. Our models are superior to the standard Siamese neural
network and state-of-the-art in this field. Our model obtains f1-scores of 79.47%, 54.09%, 40.64% and
accuracy scores of 87.24%, 95.28%, and 42.57% for the first, second, and third experiments, respectively.

INDEX TERMS Classification, deep learning, disaster, earthquake, LiDAR, siamese neural network.

I. INTRODUCTION

Buildings are an essential aspect of the life of every
human being. Most people live and work in buildings.
However, buildings are very vulnerable to natural disasters.
An earthquake, for example, is known to very often cause
damage to buildings and even take lives [1]. Most of the
injuries and casualties are caused by falling debris from the
building [2], [3]. Therefore, it is important for the rescue team
to immediately observe the condition of the building after the
earthquake to assist the disaster response process and rescue
operations [4], [5].

Previously, the post-earthquake observation process was
carried out by conducting field surveys, which were time-
consuming, costly, and terrible for creating building damage
maps and planning rescue operations. Moreover, in some
cases, this is not possible to do due to broken or blocked roads
caused by the earthquake making some locations impossible
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to be accessed [1], [6], [7], [8]. Especially, for extensively
devastated areas, getting the results right away after the
disaster is no longer feasible [9].

Alternatively, Remote sensing and geographical informa-
tion system (GIS) technology can be applied to accelerate this
work as it can capture affected areas from space [10], [11].
However, doing manual observations using remote sensing
and GIS technology still takes a lot of time if the area affected
by the disaster is wide [12]. Therefore, the post-earthquake
building observation process needs to be automated.

Previous researches [1], [13] utilize artificial intelligence
based on satellite imagery to automate post-earthquake
building observation. However, there are certain types of
collapsed patterns that cannot be captured using images, one
of which is pancake collapse where the building collapsed
vertically with an intact rooftop [14]. light detection and
ranging (LiDAR) point cloud data can be used to address this
problem since it has height information.

Previous researches that based on LiDAR data [5], [6] use
support vector machine (SVM) with a handcrafted feature
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that is not robust and requires human expertise. Therefore
this research utilizes a Siamese neural network that has a
convolutional neural network (CNN) as its sub-network to
automatically perform feature extraction. Fujita et al. [9]
use an unshared weight siamese neural network (SNN) to
detect tsunami-whased buildings because the appearance of
the pre-tsunami and the post-tsunami image is dissimilar.
However, in the case of an earthquake, the appearance of
the pre-earthquake and post-earthquake building is not as
dissimilar as tsunami-washed, since the building is either
damaged or collapsed instead of washed away. This research
decided to keep the weight sharing since the idea is to
perform classification based on the change after the disaster
occurred. Moreover, the weight sharing makes our model
very analogous to previous researches that use LiDAR on
earthquake data.

As of what has been found by [5] that the difference
between pre-earthquake feature and post-earthquake feature
is the most informative feature, therefore we apply some
modification to the SNN to enrich this feature. We perform
three experimental scenarios, one of which is a five-class
classification using all five Grades of EMS-98 building
damage description to further detail the post-earthquake
observation. As far as the author is concerned, this research is
the only one that classifies building damage in the Kumamoto
Prefecture earthquake that used all five Grades of EMS-98
based on LiDAR data.

The main contributions of this paper lie in the following

three aspects:
1) We introduced a novel architecture based on an SNN by

implementing a concatenation mechanism to enrich the
difference features by concatenating each feature map
from the low level all the way to the high level.

2) The proposed architecture outperforms its baseline and
other models in most metrics.

3) We performed five-class classification using all five
Grades of EMS-98 building damage description on
LiDAR data.

The remainder of this paper is organized as follows.
Section two gives a brief overview of related work. Section
three gives a brief overview of artificial neural networks
(ANN). The dataset and its description are detailed in
Section Four. Section five details our proposed method. The
result and discussion are provided in Section Six. We finally
conclude this paper in Section Seven.

Il. RELATED WORK

A. IMAGE-BASED BUILDING DAMAGE ASSESSMENT
Several researches have been conducted to automate
post-disaster building observations by utilizing artificial
intelligence technology. Jiet al. [1] utilizes pre-earthquake
and post-earthquake images to detect collapsed buildings
after an earthquake disaster in Port-au-prince, Haiti 2010.
The pre-earthquake and post-earthquake images are con-
catenated depth-wise into a tensor which is then performed
feature extraction. Min Ji compares two feature extraction
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techniques, namely CNN and Gray Level Cooccurrence
Matrix (GLCM) which are then classified using random
forest. The experimental results prove that CNN feature
extraction has greater accuracy than GLCM feature extrac-
tion with an accuracy of 87% and 85% for CNN and
GLCM respectively. A similar research was conducted by
Miura et al. [13], this time it was carried out to automate
the assessment of post-earthquake damage to buildings in
the Kumamoto Prefecture 2016 and Kobe 1995 areas based
on the post-earthquake image only. The classification was
carried out using CNN and obtained an accuracy score
of 93%.
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FIGURE 1. Compilation of collapsed building types [14].

Both Jietal. [1] and Miura et al. [13] use image data in
assessing building damage, but the drawback of using images
lies in not detecting buildings that collapse vertically with
a perfect roof (pancake collapsed) as illustrated in part 4b
in Fig. 1 [14]. The same thing was also stated by Min Ji
that it requires LiDAR data to capture the height reduction
pattern of the building after the earthquake occurred. By using
LiDAR data, pancake collapse can be detected because of the
representation of the height in the LiDAR data. Therefore,
in this research, the authors focused on LiDAR data in
assessing building damage.

B. LIDAR POINT CLOUD-BASED BUILDING DAMAGE
ASSESSMENT

Several researches have been utilizing LiDAR data to assess
building damage. Hajeb et al. [6] conducted an assessment
of building damage using pre-earthquake LiDAR data and
post-earthquake LiDAR data in Kumamoto Prefecture. Both
the pre-earthquake and post-earthquake data are transformed
into the digital surface model (DSM). The DSM projected
the point cloud to its z-axis resulting in a matrix where each
element of this matrix is the z-axis of each point in the point
cloud. Then, the GLCM feature extraction was applied both
to the pre-earthquake DSM and post-earthquake DSM. After
that, the resulting GLCM feature was subtracted between
pre-earthquake and post-earthquake by using element-wise
subtraction, based on these differences the classification was
done by using a SVM and achieved an accuracy score of 87%.
A similar research was conducted by Moya et al. [5]. Using
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FIGURE 2. Comparison of building damage assessment between previous methods and the proposed method.

903 buildings from the same disaster, they utilize mean height
difference, standard deviation, and correlation coefficient as
feature extraction techniques. The classification was done
using SVM and achieved an accuracy score of 93%.

To simplify, what both Moya et al. [5] and Hajeb et al. [6]
done essentially consists of three processes namely feature
extraction, feature difference, and classification (see Fig. 2).
First, the feature is extracted by using some feature extraction
techniques, then the resulting feature between pre-earthquake
and post-earthquake is subtracted using element-wise sub-
traction, and lastly, a classifier is trained to learn the
pattern. These three processes are very analogous to an
SNN. The feature extraction is done automatically by using
a CNN as a sub-network of the SNN, on top of that an
element-wise subtraction layer is stacked to calculate the
difference between the feature vector of the pre-earthquake
and post-earthquake, lastly, an output layer is stacked after
element-wise subtraction layer to perform the classification
task. The advantage of using an SNN is that it has CNN to
automatically extract feature out of the data, therefore we
don’t need to perform manual feature extraction techniques
which itself often raise a problem on its own about which
feature extraction is the best fit for the given dataset since
there are a lot of manual feature extraction techniques
available [15], [16], [17]. Moreover, it has an end-to-end
connection that allows the gradient from the loss function to
reach every layer of the SNN. Therefore, the classification
layer and feature extraction layer (CNN) can learn the pattern
simultaneously.

In this research, the SNN is customized by implementing a
feature concatenation mechanism which we explained further
in section V-B. This customized SNN is the main contribution
of this research, we named it a feature concatenated siamese
neural network (FCSNN).

Ill. OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)
ANN is a subset of machine learning that takes inspiration
from the human brain [18]. The human brain consists of
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billions of interconnected neurons that transmit electrical
signals called neurotransmitters through connections to each
other which leads to thought formation. This gives humans
the ability to think and perform actions.

Dendrites

FIGURE 3. Biological neuron.

Each of these neurons consists of three primary parts
namely dendrites, axons, and nucleus as illustrated in
Fig. 3 [19]. Dendrites are the places where neurons receive
input from other neurons. An axon is the output of a
neuron that aims to transmit signals to other neurons.
Meanwhile, the nucleus is where the signal is processed.
Neurons communicate with each other by propagating the
neurotransmitters across a narrow space called synapses
located between the axon of the sending neuron and the
dendrites of the receiving neuron.

A. ARTIFICIAL NEURON

The goal of ANN is to mimic the human brain with the hope
of developing a machine that can behave and think like a
human. Therefore the neuron in ANN composition is made
identical to biological neuron. The dendrites are mimicked
by the so-called weights and biases which compute the dot
product between weights and incoming signal. The nucleus
is mimicked by an activation function that maps the resulting
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dot product to a certain range. Lastly, the Axon is mimicked
by the output connection which propagates the resulting
activation function to the next layer [20]. An artificial neuron
is illustrated in Fig. 4.

/

FIGURE 4. Artificial neuron.

Mathematically speaking, the operation in an artificial
neuron can be formulated as in the equation (1).

y=fG-w+Db) ey

where y represents the output of the artificial neuron, w
represents the weights vector, b represents the bias, X
represents the input vector, and f represents the activation
function.

B. ARTIFICIAL NEURAL NETWORK (ANN)

ANN is a bunch of artificial neurons interconnected to
each other. The neurons in ANN are structured into several
sequential layers known as input, hidden, and output layers
as illustrated in Fig. 5. Each neuron of a layer is connected
to every neuron on the previous and the next layer, this is
usually called a fully connected layer or dense layer. Every
layer receives input from the previous layer, computes it,
and propagates the result to the next layer. The input layer
takes input and propagates it to the next layer. It doesn’t
compute anything therefore it doesn’t have any weight,
bias, and activation function. The hidden layer learns the
complex pattern in the data and transforms them into a new
representation that will ease the output layer to learn. The
output layer provides the final output of the data that is being
fed [21].

ANN learns by processing the input signals through the
whole network and obtaining the result on the output layer.
The output of ANN is then compared with the ground truth
using a loss function. This loss function is a measurement that
tells how well the ANN models the data. The higher the loss,
the worse the model. It then nudges its weights and biases
so that it has a better prediction. The most popular algorithm
is gradient descent, which is an iterative process that aims
to minimize the loss function. In other words, it tries to find
weights and biases in which if those weights and biases are
used, the loss function will be minimal.
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FIGURE 6. Siamese neural network architecture re-illustrated from [22].

C. SIAMESE NEURAL NETWORK (SNN)

SNN was first introduced by Bromley et al. [22] to solve
biometric problems such as hand signature verification. This
neural network architecture receives two inputs and produces
an output in the form of the similarity of the two inputs. This
architecture consists of two sub-networks that are identical
to each other as illustrated in Fig. 6. The sub-network
shares exactly the same architecture, weights, and biases.
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FIGURE 7. Distribution of building footprints and its labels.

This aims to ensure that the model can extract features with
exactly the same techniques and computation for the two
different inputs. The output of these two sub-networks is two
feature vectors which are then fed to the distance measure
layer (output layer) to calculate the similarity between the
two vectors. Finally, in the case of biometric verification,
thresholding is carried out to determine whether the query
image is accepted or rejected. Although this model was
originally invented for biometric verification, Many studies
have adopted this model for problems in different fields
ranging from medical images, robotics, natural language
processing, and others. This model is also not limited to
similarity measurement problems, but can also be applied to
segmentation, classification, one-shot learning problems, and
others [23]. For example, Mehmood et al. [24] used SNN to
classify Alzheimer’s disease. In the field of remote sensing,
this model is very suitable for change detection tasks such as
what has been done by [9] which classify buildings based on
their change after disaster.

IV. DATASET
This research uses a LiDAR point cloud dataset downloaded
from OpenTopography. This dataset is provided by Asia
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TABLE 1. The amount of buildings for each class.

Class Amount  Percentage(%)
Grade 1 2.558 +14.36%
Grade 2 9.331 +52.40%
Grade 3 3.145 +17.66%
Grade 4 1.643 +9.22%
Grade 5 1.128 +6.33%

Air Survey Co., Ltd which contains point clouds in the
Kumamoto Prefecture, Japan before and after the 2016 earth-
quake [25], [26]. The distribution of building footprints and
their labels are illustrated in Fig. 7.

There are 17,805 building footprints with a total of five
classes. Classes are the level of damage of buildings starting
from G1 which is not damaged at all to G5 which is a
complete collapse. These levels of damage are determined
based on the EMS-98 building damage description illustrated
in Fig. 8 while the amount of buildings for each class is
listed in Table. 1.

In this research, the dataset is divided into training, testing,
and validation data with a ratio of 60:20:20 using a stratified
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FIGURE 8. EMS-98 building damage description.
TABLE 2. The result of stratified split.
Dataset Class Amount Percentage(%)
Grade 1 1.535 +14.36%
Grade 2 5.599 +52.41%
Training Grade 3 1.887 +17.66%
Grade 4 985 +9.22%
Grade 5 677 +6.33%
Grade 1 512 +14.37%
Grade 2 1.866 +52.40%
Validation Grade 3 629 +17.66%
Grade 4 329 +9.23%
Grade 5 225 +6.31%
Grade 1 511 +14.34%
Grade 2 1.866 +52.40%
Testing Grade 3 629 +17.66%
Grade 4 329 +9.23%
Grade 5 226 +6.34%

split holdout technique. The stratified split is applied to
equalize the class ratio on training, testing, and validation data
in order to avoid missing classes where a class does not exist
in a particular dataset. The result of this split is provided in
Table. 2. The training data will be used to train the model, and
the generalization of the model during the training phase is
monitored through validation data, while testing data is only
used to evaluate the final model without intervening training
phase. Therefore, we ensure no leakage of testing data in the
training phase.

V. PROPOSED METHOD

A. PREPROCESSING

The dataset containing the pre-earthquake and post-
earthquake point cloud is extracted according to its building
footprint using ArcGIS Pro Desktop software. The result of
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this extraction is a point cloud segmented for each building.
The point cloud that was in the form of X, y, and z coordinate is
transformed into DSM by projecting it into its z-axis, leaving
the x and y coordinate behind and taking only the z coordinate
into consideration. This results in a matrix whose width and
height dimensions depend on the size of the building. each
element of this matrix is the z-coordinate of the original point
cloud.

This has to be done since the number of points from
each building is different from the other while assessing
building damage using methods such as deep learning and
machine learning generally assumes that the input shape
is fixed in terms of dimension. In the case of building
damage assessment, point cloud should not be sampled,
because sampling will cause some points to disappear as
if the building was damaged even though it is not. The
transformation of a point cloud into a DSM is illustrated in
Fig. 9 where color implies the value of the z-axis.

b e 5. v s . s
e TR .ﬂ.’:}:"r '
Fon e o . . - ‘l

FIGURE 9. Tranformation of point cloud (left) into DSM (right).

After each building is transformed into a DSM, each DSM
is resized to a fixed width and height based on the median
width and median height values in the training data. For this
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FIGURE 10. Histogram of width and height.

reason, we visualize the distribution of width and height on
the training data through the histogram illustrated in Fig. 10.

As can be seen from the histogram, there is a slight positive
skewness which indicates that there are extreme values in
the data distribution. The existence of these extreme values
will cause the average value to be large if the average value
is calculated using the mean. Therefore, the average value
is calculated by using the median and it turned out that
the median width and height are 16 and 17 respectively.
To simplify the sliding window of the convolution kernel and
pooling layer, the height is rounded down to 16. Therefore all
samples on training, testing, and validation data are resized
to be 16 x 16 in width and height.

B. CLASSIFICATION METHOD

This research utilizes an SNN to classify building damage.
The SNN model is modified by implementing a con-
catenation mechanism to concatenate the features of each
convolution block into a high-dimensional vector. This is
done to enrich the features of differences between the
pre-earthquake and post-earthquake data since this feature
seemed to be the most defining feature to detect collapsed

Input Low-level
Image feature feature feature

Mid-level High-level

FIGURE 11. Hierarchical deep learning’s feature map.

buildings [5]. As explained by Goodfellow et al. [27] in his
book entitled “Deep Learning” (2016) each feature map
generated by the convolution layer has a different meaning
for each level (see Fig. 11). The low-level feature is extracted
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by the swallower layer of CNN and tends to contain minor
details of the image such as lines, dots, and edges. While the
high-level feature is extracted by the deeper layer of CNN and
tends to contain higher abstraction of an object in the image
such as shape and object part.

In this research, we aim to make a difference feature
at every level of the convolution block. Therefore, the
concatenation mechanism is used to gather the resulting
feature vectors from each convolution block to the subtraction
layer that is stacked after the last convolution block as
illustrated in Fig. 12. This modification is also motivated

Pre-earthquake DSM

— Convolution Block(32) |

Post-earthguake DSM

| Convolution Block(32) ——

Convolution Block{64) Convolution Block({64) ——

v v

Convolution Block(128)| <— >3 5. [Convolution Block(128)

¢ weight ¢
Flatten & Concat() Flatten & Concat()

Substraction()

Diense(in)

FIGURE 12. FCSNN architecture.

by Cover’s Theorem [28] which states that a non-linearly
separable pattern when cast into a higher dimension using
a non-linear transformation is more likely to be linearly
separable as illustrated in Fig. 13. This same statement is
what motivates kernel function for SVM. However, this
statement holds true for our model since our model uses the
ReLU activation function which in itself is also a non-linear
transformation

Non-linsar

transformation

¥
¥

X X

FIGURE 13. Non-linearly separable patterns become linearly separable
after being cast to three dimensional using a non-linear transformation.

Therefore, we hypothesize that this modification will give
better classification performance. The overall architecture of
this model is illustrated in Fig. 12 and its convolution block is
illustrated in Fig. 14. Each convolution layer uses 3 x 3 kernel
with a stride of one and zero padding. Lastly, we regularized
each kernel using L1 and L2 kernel regularization.

Just like a vanilla SNN, this model consists of two identical
sub-networks that share the same weights and biases [22].
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FIGURE 14. Convolution block architecture.

This is simply to extract features from two different inputs
using exactly the same way. Each output from the convolution
block in each sub-network is forwarded directly to the flatten
and concatenation layer. This concatenation mechanism is
illustrated in Fig. 15 and formulated in the equation (2).

u="{uy,u,...,u
V={vo,Vi,..., s}
w={wy,wi,..., Wy}

X=[u,vw] )

where i, v, and W represent low-level feature vector, mid-level
feature vector, and high-level feature vector respectively.
Whereas X represents the resulting concatenation from those
three vectors. The dimension of X is the total dimension of
those three vectors.

On top of the concatenation layer, we stacked a subtraction
layer that performs element-wise subtraction between the
pre-earthquake feature vector and post-earthquake feature
vector as formulated in equation (3).

o)) ao bo
C1l al b1

- . - . G)
o a, b,

where a represents the pre-earthquake feature vector, b rep-
resents the post-earthquake feature vector, and ¢ represents
the difference between the two feature vectors. Lastly, the
resulting difference feature vector is fed to the last layer to
perform the classification task.

C. EVALUATION
This research makes use of a confusion matrix as its eval-
uation metrics. A confusion matrix represents the resulting
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prediction summary and its label in the form of a matrix.
It shows how many predictions are correct and incorrect
for each class [29]. By using the confusion matrix we can
understand the model performance further such as what kind
of error that is frequently made by the model and which class
is the most difficult for the model

The confusion matrix consists of four components as
illustrated in Fig. 16. where true negative (TN) is the number
of negative labels predicted as negative, false positive (FP)
is the number of negative labels predicted as positive, false
negative (FN) is the number of positive labels predicted as
negative, and true positive (TP) is the number of positive
labels predicted as positive.

1) ACCURACY
Accuracy is the number of overall true predictions divided
by the total number of samples. Accuracy can be quantified
using equation (4).

TP +TN

Accuracy = 4)
TP+ FP+ FN + TN

2) RECALL
Recall, also known as sensitivity, is a true positive ratio
compared to the total number of positive labels. Recall can
be quantified using equation (5).

TP

Recall = ——— (5)
TP + FN

3) PRECISION
Recall, also known as sensitivity, is a true positive ratio
compared to the total number of positive labels. Precision can
be quantified using equation (6).

TP

Precision = ———— (6)
TP + FP

4) F1 SCORE

F1 Score, also known as the F-measure or F-Score, is the
harmonic mean between precision and recall. F1 score ranges
between O to 1 with O being the worst and 1 being the best
score [30]. F1 score is often used as a measurement of overall
machine learning performance because this value also takes
into account class imbalances in the data [30]. F1 score can
be quantified using equation (7).

Precision x Recall

F1 score =2 x — 7)
Precision + Recall

D. MCNEMAR'S TEST

Deep learning is a model that is trained on a fairly large
dataset and generally has a very large number of parameters.
Deep learning is popularly known for its training process that
takes quite a lot of time, it can take days or even weeks.
This precludes resampling techniques from training the deep
learning model many times in a single experimental run, as it
will take a very long time. For this reason, this research
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FIGURE 15. Concatenation mechanism.
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FIGURE 16. Confusion matrix.

used McNemar’s test to compute the statistical significance
between the two classification models.

McNemar’s test is a suitable test for evaluating deep
learning models that are large and slow to train because this
test is suitable for algorithms that are executed once with an
acceptable type I error [31]. It assesses the dependence of
categorical data that are matched or paired [32].

McNemar’s test works based on a contingency table, which
in the context of a comparison of classification algorithms,
the cell in this contingency table is the frequency of the
two algorithms predicting the same sample as true, the
frequency of the two algorithms predicting the same sample
as false, and the frequency of both algorithms predicting
a sample with different predictions. It allows us to see
if the odds of true to false are the same for the two
models [32]. For example, given the prediction results of two
different classifiers, as illustrated in Fig. 17, the contingency
table that will be generated is as illustrated in Fig. 18.
Then McNemar’s test is computed using the following
equation:

72 = (Ino,1 — n10l — 1)?
no,1 + 11,0

®)

where n is the contingency table. Then, the p-value is
computed by referring to the Chi-squared distribution with
one degree of freedom.
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Low-level Mid-level High-level
| Concatenate()
Sample Classifier A | Classifier B Label
1 1 1 1
2 1 1 1
3 1 1 0
4 0 1 1
5 0 1 0

FIGURE 17. Prediction result of two different classifiers and its label.

Classifier B8 Classifier B

Caorrect Incorrect
Classifier & 2 ’
Correct
Classifier &
1 1
Incorrect

FIGURE 18. Contingency table.

VI. RESULT AND DISCUSSION
The experiment in this research is done using Python
programming language and ran in the following hardware
specification:

« RAM: 32 GB.

« GPU: NVIDIA GeForce GTX 1080 Ti.

e Processor: Intel (R) Core (TM) i7-6800K CPU @

3.40GHz.

A. IMPLEMENTATION DETAILS

In our experiment, we set the random seed for Tensorflow,
Numpy, and scikit-learn to be 1234, 0, and 42 respectively.
We also activate the determinism setting for the TensorFlow
library. This is done to make sure that any trial we have
done in every experiment uses exactly the same random
behavior. Therefore, we declare that any different result in
this research is caused by the model and its configuration,
not the difference in the random behavior of the model.
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TABLE 3. Ablation study of the first experiment scenario.

M. | Configuration | Metrics
odel
‘ Use Dense block Balancing Layers in each block ~ Use Dropout ‘ Accuracy(%)  Flscore(%)  Precision(%) Recall(%)
FCSNN - - 3 layers yes 86.97 79.13 77.77 80.53
FCSNN - - 1 layer yes 82.08 70.13 71.75 68.58
SNN - - 3 layers yes 85.61 77.35 74.79 80.08
SNN - - 1 layer yes 81.95 73.66 66.66 82.30
FCSNN - Class Weighting 3 layers yes 82.76 75.71 66.66 87.61
FCSNN - Class Weighting 1 layer yes 75.57 66.66 57.32 79.64
SNN - Class Weighting 3 layers yes 78.96 73.04 60.17 92.92
SNN - Class Weighting 1 layer yes 85.88 78.05 74.59 81.85
FCSNN - - 3 layers - 87.65 78.98 82.60 75.66
FCSNN - - 1 layer - 84.93 75.49 75.33 75.66
SNN - - 3 layers - 86.56 78.14 77.97 78.31
SNN - - 1 layer - 86.16 76.27 80.39 72.56
FCSNN - Class Weighting 3 layers - 85.75 79.28 71.53 88.93
FCSNN - Class Weighting 1 layer - 82.49 74.45 67.38 83.18
SNN - Class Weighting 3 layers - 85.07 77.82 71.48 85.39
SNN - Class Weighting 1 layer - 84.26 76.32 70.83 82.74
FCSNN yes - 3 layers yes 85.21 77.24 73.12 81.85
FCSNN yes - 1 layer yes 83.03 71.39 73.93 69.02
SNN yes - 3 layers yes 85.21 75.72 76.23 75.22
SNN yes - 1 layer yes 78.56 68.14 62.59 74.77
FCSNN yes Class Weighting 3 layers yes 85.61 78.18 73.07 84.07
FCSNN yes Class Weighting 1 layer yes 71.77 65.67 52.36 88.05
SNN yes Class Weighting 3 layers yes 84.26 77.25 69.36 87.16
SNN yes Class Weighting 1 layer yes 59.70 59.59 43.02 96.90
FCSNN yes - 3 layers - 87.24 79.47 78.44 80.53
FCSNN yes - 1 layer - 84.26 73.27 76.44 70.35
SNN yes - 3 layers - 83.03 72.64 71.86 73.45
SNN yes - 1 layer - 83.85 75.76 70.18 82.30
FCSNN yes Class Weighting 3 layers - 85.07 77.08 72.83 81.85
FCSNN yes Class Weighting 1 layer - 81.41 74.19 64.59 87.16
SNN yes Class Weighting 3 layers - 84.53 76.05 72.40 80.08
SNN yes Class Weighting 1 layer - 83.31 75.54 68.50 84.07

To prevent the models from overfitting, we also implemented
early stopping with a patience of three.

The hyperparameter that is used in our experiment is
decided through a grid search that is done for every individual
model with the following hyperparameter pool:

o Optimizer: Adam, Momentum, RMSprop, Nadam, and
Adamax.

o Batch size: 512, 256, 128, 64, 32, 16, and 8.

o Learning rate: 0.0001, 0.0005, 0.001, and 0.005.

The hyperparameters are chosen based on the best F1
score on the validation set. Lastly, the model with its best
hyperparameter configuration is evaluated on a testing set to
get the final result.

B. COMPARISON

We conducted three experiment scenarios. The first scenario
is to classify only intact (Grade 1) and total collapsed (Grade
5) buildings as suggested by [6]. In the second scenario,
we merged Grade 1, Grade 2, Grade 3, and Grade 4 into
a single class namely non-collapsed while Grade 5 remains
unchanged, this merging refers to what has been done
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FIGURE 19. Bar chart of the first experiment scenario.

by [1] and [5]. In the third and last scenario, we used all
the 5 Grades of the EMS-98 building damage description.
We compared our model with SNN without a concatena-
tion mechanism. This is to study the effect of implementing
a concatenation mechanism. We also compared our model
with Hajeb et al’s SVM [6], Moya et al.’s SVM [5], and
Fujita et al.’s pseudo-SNN [9] point cloud-based building
damage assessment model using the 2016 Kumamoto Pre-
fecture Earthquake dataset with EMS-98 damage description.
We reimplemented Fujita et al’s model using the same
dataset, environment, and treatment as ours. Although the
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10 TABLE 4. Metrics of the first experiment scenario.
Model Accuracy(%)  Fl score(%)  Precision(%) Recall(%) p-value
Moya et al [5] 79.64 56.64 81.66 43.36 0.001
Hajeb et al [6] 83.71 68.08 85.33 56.63 0.031
% Fujita et al [9] 85.34 78.65 71.07 88.05 0.001
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FIGURE 21. ROC curves of the first experiment scenario.
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FIGURE 22. Bar chart of the second experiment scenario.

disasters used by Hajeb et al. and Moya et al. are the same as
in this research, the building footprint and damage description
are different from this research, therefore Hajeb et al.’s
model and Moya et al’s model are reimplemented. The
reimplementation for Fujita et al’s model is done by
grid search hyperparameter with the same manner and
hyperparameter pool as explained in section VI-A since
their model is a deep learning-based model. Meanwhile,
the reimplementation for Moya et al and Hajeb et al is
done by grid searching hyperparameter with the following
hyperparameter pool:
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Additionally, we performed an ablation study to study the
effect of a certain configuration on our proposed model. This
includes concatenation mechanism, class weighting, dropout,
adding more layers, and adding a block of dense layers to the
network.

Accuracy might be the most common metric in classifi-
cation, however, in the case of damage assessment where
usually most of the buildings are intact, using the accuracy
score alone is very deceitful [31]. Therefore, this research
makes use of the confusion matrix and its four essential
metrics in the classification task, which are accuracy, {1 score,
precision, and recall. We also visualize the receiver operating
characteristic (ROC) curve and quantified its area under the
curve (AUC). Our main measurement in these experiments
is the F1 score since it takes into account the imbalanced
class problem [31], [33]. As an addition to that, we also
measure the accuracy, precision, and recall score for the
discussion purpose. Lastly, we performed hypothesis testing
using McNemar’s test to verify whether there is a significant
difference or not. McNemar’s test is a suitable test for
evaluating deep learning models that are large and slow to
train because this test is suitable for algorithms that are
executed once with an acceptable type I error [34].

C. EXPERIMENT I

In this experiment, we performed a binary classification to
classify only the intact (Grade 1) and collapsed (Grade 5)
buildings. Before we compare our model against baseline
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TABLE 5. Ablation study of the second experiment scenario.
Model | Configuration | Metrics
\ Use Dense block Balancing Layers in each block ~ Use Dropout \ Accuracy(%)  F1score(%)  Precision(%) Recall(%)
FCSNN - - 3 layers yes 93.96 42.97 53.64 35.84
FCSNN - - 1 layer yes 90.78 2.38 3.630 1.76
SNN - - 3 layers yes 85.36 34.13 23.89 59.73
SNN - - 1 layer yes 91.99 5.310 10.66 3.53
FCSNN - Class Weighting 3 layers yes 86.52 39.54 27.64 69.46
FCSNN - Class Weighting 1 layer yes 81.04 31.05 20.18 67.25
SNN - Class Weighting 3 layers yes 90.45 45.16 35.53 61.94
SNN - Class Weighting 1 layer yes 73.99 28.21 17.10 80.53
FCSNN - - 3 layers - 95.39 50.89 78.70 37.61
FCSNN - - 1 layer - 95.14 47.73 75.23 34.95
SNN - - 3 layers - 95.02 47.16 72.47 34.95
SNN - - 1 layer - 95.08 44.44 78.65 30.97
FCSNN - Class Weighting 3 layers - 92.53 47.84 42.95 53.98
FCSNN - Class Weighting 1 layer - 87.64 41.33 29.58 68.58
SNN - Class Weighting 3 layers - 93.59 45.71 49.48 42.47
SNN - Class Weighting 1 layer - 90.39 46.89 36.12 66.81
FCSNN yes - 3 layers yes 88,59 42,00 31,01 65,04
FCSNN yes - 1 layer yes 6,34 11,93 6,34 100
SNN yes - 3 layers yes 6,34 11,93 6,34 100
SNN yes - 1 layer yes 6,34 11,93 6,34 100
FCSNN yes Class Weighting 3 layers yes 88,51 37,17 28,47 53,53
FCSNN yes Class Weighting 1 layer yes 92,19 40,34 39,16 41,59
SNN yes Class Weighting 3 layers yes 91,15 46,15 37,60 59,73
SNN yes Class Weighting 1 layer yes 93,31 51,62 47,7 56,19
FCSNN yes - 3 layers - 95,28 54,09 70,71 43,80
FCSNN yes - 1 layer - 94,72 41,97 69,38 30,08
SNN yes - 3 layers - 94,69 43,91 66,66 32,74
SNN yes - 1 layer - 94,94 44,78 73,00 32,30
FCSNN yes Class Weighting 3 layers - 89,97 44,13 34,14 62,38
FCSNN yes Class Weighting 1 layer - 89,46 43,77 33,1 64,60
SNN yes Class Weighting 3 layers - 88,59 42,00 31,01 65,04
SNN yes Class Weighting 1 layer - 93,48 51,05 48,79 53,53

and [5], [6], [9], we first performed an ablation study
which is provided in Table. 3. The result shows that the
best configuration in terms of F1 score is to add dense
blocks, having 3 layers in every block, not using dropout
and class weighting with an F1 score of 79.47 as shown
in row 25th in Table. 3. We also proved that implementing
a concatenation mechanism (FCSNN) can enhance model
performance in almost every configuration as indicated by
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gray rows (FCSNN) compared to white rows (SNN) in
Table. 3. In the class balancing matter, it can be seen that
the class weighting configuration seemed to sacrifice a lot
of precision score for the sake of recall score which was not
worth the trade-off, resulting in a lower F1 score compared to
without balancing which tends to have higher F1 score. Our
best result is obtained using a batch size of 512, a learning
rate of 0.005, and an Adamax optimizer.
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We then compare the result of our ablation study which was
chosen based on the highest F1 score against [5], [6], [9], and
our baseline model. Table. 4 provides the metrics from these
five classification models which we also illustrate it using a
bar chart in Fig. 19. The confusion matrices are illustrated
in Fig. 20. It can be inferred that our model outperformed
previous models in terms of F1 score. We achieved the highest
F1 score and accuracy score. However, the highest precision
is achieved by [6] with a precision score of 85.33 while the
highest recall is achieved by [9].

From Fig. 20, it seemed that our model makes prediction
attempt for collapsed class more often than the previous
model and miss it more often too. Therefore our precision
is not as high as [6]. The ROC curve is illustrated in Fig. 21
with its AUC quantified in its legend. The highest AUC score
is achieved by [9] as can be seen from the confusion matrices
that they have the most true positive. However, our proposed
model is tied to its baseline model and outperforms [5], [6].
Using an alpha of 0.05, we can conclude that there is a
significant difference in terms of classification performance
between our model compared to previous models, however,
the difference between our model and baseline model is not
statistically significant as informed by the p-value in Table. 4.

D. EXPERIMENT II

In this experiment, we performed a binary classification to
classify non-collapsed (Grade 1 - Grade 4) and collapsed
(Grade 5) buildings. Grade 1, Grade 2, Grade 3, and Grade
4 are merged to form a single class, namely non-collapsed
while Grade 5 is left unchanged. This merging refers to what
has been done by [1] and [5]. The ablation study in this
experiment is provided in Table. 5. The result is quite similar
to the first scenario where the highest F1 score is achieved
by using a dense block, having 3 layers in each block, and
not using class weighting and dropout layer. We also proved
that implementing a concatenation mechanism can enhance
model performance. Our best result is obtained using a batch
size of 64, a learning rate of 0.001, and a Nadam optimizer.

In this experiment, we are facing an extremely imbalanced
class with a ratio of 93.66%: 6.33% for non-collapsed and
collapsed respectively. These models seemed to struggle
in detecting positive class, hence the high accuracy but
low F1 score. As a result, these models are capable of
detecting negative classes easily. This is a very common
phenomenon when a classification model is trained on an
imbalanced dataset, the model will make prediction attempts
for the majority class more often than the minority class. The
implementation of class weighting indeed increases the recall
score. However, just like in the previous scenario, it sacrifices
a lot of precision scores for a slight improvement in recall
score which is not worth the trade-off.

The comparison between our model and the previous
models is provided in Table. 6 and Fig. 22. Its confusion
matrices are illustrated in Fig. 23. It can be inferred that our
model outperformed previous models in terms of F1 score.
Although our model is not the one that captures the positive
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TABLE 6. Metrics of the second experiment scenario.

Model Accuracy(%)  Flscore(%)  Precision(%) Recall(%) p-value
Moya et al [5] 88.73 8.23 8.53 7.96 0.001
Hajeb et al [6] 94.58 38.73 69.00 26,99 0.014
Fujita et al [9] 93.09 49.59 46.18 53.53 0.001

SNN 93.31 51.62 47.70 56.19 0.001

FCSNN 95.28 54.09 70.71 43.80 -
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FIGURE 24. ROC curves of the second experiment scenario.

class the most, however, our model managed to minimize
the false positive rate which leads to a higher AUC score as
can be seen through the ROC curve in Fig. 24. The p-value
informed that there was a significant difference in terms of
classification performance between our model and previous
models.

E. EXPERIMENT Il

In this experiment, we performed a multiclass classification
to classify the five Grades of EMS-98 building damage
description. Grade 1, Grade 2, Grade 3, Grade 4, and Grade
5 are left unchanged. Each metric in this experiment is
averaged throughout all the classes. We adjusted our model
for the multiclass classification problem. The output layer
consists of five neurons with softmax activation function
while the loss function is changed to categorical cross-
entropy. The result of the ablation study in this experiment
is provided in Table. 7.

The result of this experiment is somewhat different
from those in the first and second experiments. The
highest F1 score is achieved without dense block and by
using class weighting and dropout. It is no surprise that
we get different configurations since this is a multiclass
classification which is a very different task from those
in the first and second experiments where we performed
binary classification. We also proved that in almost any
configuration, implementing a concatenation mechanism can
enhance the model’s performance. Our best result is obtained
using a batch size of 16, a learning rate of 0.0001, and an
Adam optimizer.

The comparison between our model and the previous
models is provided in Table. 8 and Fig. 25. Its confusion
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TABLE 7. Ablation study of the third experiment scenario.

| Configuration | Metrics
Model
\ Use Dense block Balancing Layers in each block ~ Use Dropout \ Accuracy(%)  F1 score(%)  Precision(%)  Recall(%)
FCSNN - - 3 layers yes 60.29 37.82 35.53 41.41
FCSNN - - 1 layer yes 55.57 25.29 21.42 30.95
SNN - - 3 layers yes 59.33 36.75 34.63 40.45
SNN - - 1 layer yes 55.54 32.46 31.57 36.04
FCSNN - Class Weighting 3 layers yes 42.57 40.64 39.27 47.29
FCSNN - Class Weighting 1 layer yes 34.45 33.03 32.11 39.25
SNN - Class Weighting 3 layers yes 37.96 37.40 36.82 45.76
SNN - Class Weighting 1 layer yes 32.96 34.14 36.29 44.47
FCSNN - - 3 layers - 60.76 38.30 42.59 40.76
FCSNN - - 1 layer - 57.39 33.61 36.68 34.66
SNN - - 3 layers - 60.85 39.29 42.67 41.58
SNN - - 1 layer - 59.42 36.74 38.16 38.19
FCSNN - Class Weighting 3 layers - 40.66 39.67 39.06 47.39
FCSNN - Class Weighting 1 layer - 38.78 36.09 35.71 45.30
SNN - Class Weighting 3 layers - 38.41 38.02 37.92 48.16
SNN - Class Weighting 1 layer - 39.00 36.89 35.99 44.87
FCSNN yes - 3 layers yes 60.20 38.23 35.83 41.98
FCSNN yes - 1 layer yes 54.31 24.62 20.23 31.61
SNN yes - 3 layers yes 57.14 25.39 24.82 28.77
SNN yes - 1 layer yes 56.02 23.75 23.25 27.23
FCSNN yes Class Weighting 3 layers yes 43.89 38.92 37.09 45.24
FCSNN yes Class Weighting 1 layer yes 29.68 30.23 34.81 41.45
SNN yes Class Weighting 3 layers yes 41.61 39.02 38.18 43.13
SNN yes Class Weighting 1 layer yes 36.16 31.70 38.21 37.91
FCSNN yes - 3 layers - 60.82 38.61 39.23 40.42
FCSNN yes - 1 layer - 60.34 37.87 38.21 39.99
SNN yes - 3 layers - 57.90 38.74 41.27 39.48
SNN yes - 1 layer - 60.40 38.14 38.50 40.08
FCSNN yes Class Weighting 3 layers - 39.06 39.80 39.40 48.55
FCSNN yes Class Weighting 1 layer - 38.69 37.58 36.78 46.33
SNN yes Class Weighting 3 layers - 43.02 40.47 39.97 47.37
SNN yes Class Weighting 1 layer - 39.76 38.72 37.95 47.15
TABLE 8. Metrics of the third experiment scenario. The confusion matrices and ROC curves show us that
there are classes that are hard to detect. They are Grade
Model  Accuracy(%) Flscore(%) Precision(%) Recall(®%) p-value 3 and Grade 4. We believe this is due to the characteristic
Moya et al [5] 42.17 22.31 27.91 25.06 0.762 : : :
Hagob ot [6] 5270 3101 12.95 3138 0001 of Fhos.e classes are mainly !ocatefl in the vyall (see' Fig. 8)
Fujiaetal 9] 60.74 39.15 38.74 43,14 0.001 which is hard to capture using Airborne LiDAR since the
SNN 43.02 40.47 39.97 47.37 0.001 . . . . . R
FCSNN 42.57 40.64 39.27 47.29 Z sensor is flying, resulting in a point cloud that doesn’t

Accuracy

W Moyaetal W Hajebetal

FIGURE 25. Bar chart of the third experiment scenario.

F1 score Precision Recall

Fujitaetal W SNN W FCSNN

matrices are illustrated in Fig. 26 while ROC curves are
illustrated in Fig. 27. The highest accuracy score is achieved
by [9], however, their model has a lower recall score which
results in a lower F1 score.
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contain any information about the wall as can be seen in
Fig. 9. Moreover, the DSM method only takes into account
the z-axis of the point cloud. Grade 2 is easy to detect
since this class is the majority class. Grade 1 and grade 5
are somewhat easier because these classes are very well
presented using DSM. The p-value informed us that there is a
significant difference between our model against Hajeb et al
and Fujita et al, meanwhile there is no significant difference
between our model against Moya et al as can be seen form
Table. 7.

F. GENERALIZATION

The FCSNN model has better performance because the
output layer receives a high-dimensional concatenated vector.
This proves what Cover stated that a non-linearly separable
pattern after increasing its dimensions through a non-linear
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transformation will make the pattern more linearly separable
is true [28]. However, adding these dimensions will not
always have a good effect on the model’s performance.

Hughes stated that a classification model with initially low
dimensional data, its accuracy can be increased by adding
dimensions, but if the dimension is too high the accuracy of
the classification model will tend to decrease as illustrated in
Fig. 28. This is also known as the Hughes phenomenon or the
curse of dimensionality where in high dimensions, the model
will find it easier to find a hyperplane to separate each class
in the training data even if the data has a lot of noise, so the
resulting model tends to experience overfitting problem [35],
[36].
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TABLE 9. Model’s generalization.

First experiment

Dataset Binary crossentropy loss
Training set 0,305165
Validation set 0, 365924
Testing set 0, 349004
Generalization on validation set —0,060759
Generalization on testing set —0, 043839

Second experiment

Dataset Binary crossentropy loss
Training set 0, 155560
Validation set 0,168771
Testing set 0, 159026
Generalization on validation set —0,013211
Generalization on testing set —0, 003465

Third experiment

Dataset Categorical crossentropy loss
Training set 1,420278
Validation set 0,168771
Testing set 0, 159026
Generalization on validation set 1,251507
Generalization on testing set 1,261252

For that reason, we discuss the generalization of the
proposed model chosen based on the highest fl score from
the three experimental scenarios that have been carried out.
Table. 9 provides the final model’s loss for training data,
the model’s loss for validation data, and the model’s loss for
testing data. The loss curve is provided in Fig. 29. We quantify
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generalization by calculating the loss differential between
training and testing. It is done by subtracting the training loss
and testing loss.

The loss differential of the model on validation data and
testing data in the three scenarios is not huge, which means
that the loss in the training data is not much different from the
loss in the validation data and testing data. Therefore, we state
that this model does not experience overfitting problems. This
might happen because the resulting dimensions are not too
high to cause the model to experience an overfitting problem.
The loss differential of the model in the third experiment has
a positive value indicating that the performance on validation
data and testing data is better than the performance on training
data. This is due to too many regularizations applied for the
best configurations found in experimental scenario 3, bearing
in mind that the best results in experimental scenario 3 are
obtained by implementing class weights and dropouts.

VIi. CONCLUSION

This research develops a classification model for building
damage assessment based on pre-earthquake point cloud and
post-earthquake point cloud. The problem we discussed in
this paper is the usage of handcrafted features which require
human expertise. We automate this by using an end-to-end
connected model. The basis of our proposed model is an
SNN. We apply some modifications to an SNN to enhance
its classification capability.

We conducted three experiment scenarios where we
outperformed our comparison models and achieved an F1
score of 79.47%, 54.09%, and 40.64% for experiment I,
experiment II, and experiment III respectively. In terms of
accuracy, we achieved an accuracy score of 87.24%, 95.28%,
and 42.57% for experiment I, experiment II, and experiment
IIT respectively. Indeed, this result can still be improved by
implementing certain approaches to improve the performance
of this model. This research is an initial research on the
FCSNN. Therefore, there are still many things that can be
improved and further worked on in the future.

For future work, we would like to consider the use of
Voxel as a replacement for DSM to improve our results.
We also plan to conduct some research related to this topic
using different sub-network architectures for the FCSNN.
The most important thing in this research is introducing a
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novel architecture based on an SNN. We also have a plan to
bring this model into other fields such as sequence embedding
and compare our result with Zheng et al’s SENSE [37].
The combination of our idea and SENSE also interests us.
Another field that caught our interest is image analysis such
as patch matching by Hanif et al. [38] which uses enhanced
two-channel and SNN on the UBC image patch benchmark
dataset [39]. For now, we hope this research can be useful as
a foundation for future research.
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