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Abstract

The main objective of Change Detection (CD) is to gather change information from bi-temporal remote
sensing images. The recent development of the CD method uses the recently proposed Vision Transformer
(ViT) backbone. Despite ViT being superior to Convolutional Neural Networks (CNN) at modeling long-range
dependencies, ViT lacks a locality mechanism, a critical property of pixels that comprise natural images,
including remote sensing images. This issue leads to segmentation artifacts such as imperfect changed region
boundaries on the predicted change map. To address this problem, we propose LocalCD, a novel CD method
that imposes the locality mechanism into the Transformer encoder. It replaces the Transformer’s feed-forward
network using an efficient depth-wise convolution between two 1 × 1 convolutions. LocalCD outperforms
ChangeFormer by a significant margin. Specifically, it achieves an F1-score of 0.9548 and 0.9243 on CDD
and LEVIR-CD datasets.

Keywords: Change Detection, Vision Transformer, Pyramidal Vision Transformer, Local Vision Transformer,
CDD, LEVIR-CD

1. Introduction

Change Detection (CD) is one of the most impor-
tant and challenging tasks in remote sensing image
observation. It is a process of gathering change
information from images on the same geographical
area taken at different times [1–3]. In practice, CD
compares two pre-registered images consisting of
pre-change and post-change images. Both images
represent the same spatial area while having dif-
ferent temporal information. The pre-change image
represents an image before the change event, while
the post-change image represents an image after the
change event. CD has many practical applications,
such as urban development analysis, disaster assess-
ment, agricultural investigation, environment moni-
toring, and deforestation [4]. These applications are
essential for a decision-maker organization. To make
a proper decision, the change information should
be accurate and can be acquired fast. However,
manual observation on this challenging task is time-
consuming [3]. Therefore, an automated method is
needed to make the process faster and more accurate.

There are two common approaches of the CD
method, pixel-based and object-based[2]. The pixel-
based is the simplest one. It works by comparing
each pixel from different images at the same loca-
tion. On the other hand, in an object-based approach,
all objects in the area are identified first and then
compared to the same object from different images.
The output of the CD is a binary change map (CM)
that flags the changed region with a white pixel and
the unchanged region with a black pixel.

Transformer architecture [5] is a recent Natu-
ral Language Processing (NLP) advance that can
model long-range dependencies between word to-
kens. Transformer consists of two main components:
self-attention (SA) and two consecutive feed-forward
networks (FFNs). SA is responsible for refining
the feature representation, while FFNs enrich it by
expanding the feature dimension. The success of
Transformer inspires the vision community to adopt
the SA mechanism to enhance the image classifica-
tion model. Vision Transformer (ViT) [6] is the first
vision model that uses self-attention to learn long-
range interaction between visual tokens. ViT uses the
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Figure 1. Examples of CD artifact on the predicted change map of ChangeFormer. The yellow boxes show the imperfect
changed region boundaries.

same architecture as the original Transformer. How-
ever, instead of using a word as the token, it uses
a 16 × 16 image patch. Despite ViT outperforming
state-of-the-art Convolution Neural Network (CNN)
[7] on ImageNet [8] classification, it can not be used
directly to perform a downstream vision task like
image segmentation and detection. One reason is that
those tasks require fine-grained level information
for smaller patch sizes. Smaller patch size leads to
an increase in the token number. However, the SA
suffers from quadratic computation concerning the
number of tokens, which hinders it from utilizing
many tokens.

Pyramid Vision Transformer (PVT) [9] is the
first ViT variant that utilizes a down-sampling query
and key matrices to reduce the computation com-
plexity of SA. It also leverages a hierarchical struc-
ture to enhance the representation power of the
model, following the success of ResNet [7]. Swin
Transformer [10] is another popular approach for
reducing the complexity of SA. Different from PVT,
it used interactions within a constrained window. Re-
lying on PVT as the backbone, SegFormer [11] pro-
posed a lightweight Multi-layer Perceptron (MLP)
decoder to improve the segmentation capability of
the model, making it the first Transformer-based
vision model specialized for segmentation tasks.

The advance of the Vision Transformer is
quickly adapted to remote sensing, especially on
change detection tasks. BIT [12] and ChangeFormer
[13] are pioneers in Transformer-based CD methods.
BIT used the Transformer encoder to enhance the

feature maps produced by the CNN backbone. In
contrast, ChangeFormer uses a similar architecture
to SegFormer, constructed in a Siamese network.
ChangeFormer had a slightly better change map
compared to BIT.

Despite its superiority, the change map produced
by ChangeFormer still contains artifacts. We investi-
gated extensively and found that ChangeFormer cre-
ates imperfect boundaries in the changed region. Fig.
1 illustrates the artifacts on the change map produced
by ChangeFormer. We relate this phenomenon with
the lack of locality induction on the ChangeFormer,
a property that is inherited from the used Trans-
former backbone. Natural images are grid-like data
where each pixel correlates to the neighbor pixels.
Relying upon this fact and inspiration from [14], we
proposed LocalCD, a novel CD method to solve the
boundaries problem in ChangeFormer. Specifically,
we impose the locality mechanism into the FFNs
inside the ChangeFormer. Our proposed method pro-
duces a change map having better boundaries of the
changed region.

Finally, the following are the contributions of our
work:

1) We modify the ChangeFormer by adding
locality induction to the FFNs inside it. This
modification is proven effective in solving
the boundaries problem on the changed re-
gion of the produced change map.

2) We use Lp distance to differentiate between
features from pre-image and post-image in-
stead of simple minus operations. We incor-
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porate this Lp distance in the fusion feature
module. This modification is proven to be
effective in increasing the model perfor-
mance.

3) We use a lightweight conv decoder instead
of the Multi-layer Perceptron (MLP) de-
coder used in ChangeFormer. This replace-
ment is to support the locality induction in
the encoder further.

2. Related Work

2.1. CNN-based CD Method

CNN is one of the most used architectures for
solving CD tasks compared to other neural archi-
tectures. One of the reasons is CNN efficient and
specifically designed for processing image data that
matches the CD’s input data. Furthermore, CNN
support for transfer learning, a feature that can sig-
nificantly speed up the model’s convergencies. This
characteristic of CNN makes it a popular vision
backbone adopted in many scientific fields, including
remote sensing. Many works leverage CNN to build
CD methods such as Fully Connected Early Fusion
(FC-EF) [15], Fully Connected Siamese Diff (FC-
Siam-Diff)[15], STANet [16], DASNet [17], and
SNUNet [18].

FC-EF [15] used a stack of convolution layers
to extract essential features from two input images.
It incorporates early fusion by concatenating pre-
image and post-image along the channel dimensions.
The extracted features are then processed by the
pixels classifier to build the change map. In con-
trast, FC-Siam-Diff [15] use a different approach.
Instead of using an early fusion mechanism, FC-
Siam-Diff used a Siamese network containing two
similar sub-networks. Each sub-network is respon-
sible for extracting features from a single image.
The final features are obtained by subtracting the
feature of the pre-image from the feature of the post-
image. Like FC-Siam-Diff, STANet [16] also used
a Siamese network with a shared weight to extract
features from pre-image and post-image. However,
STANet used a Residual Network (ResNet) [7] as the
backbone. Furthermore, STANet proposed sophisti-
cated fusion modules leveraging spatial and temporal
attention called Basic spatiotemporal attention mod-
ule (BAM) and Pyramid spatiotemporal attention
module (PAM). Both modules are responsible for
enhancing the feature representation produced by the
backbone in two different ways.

Similar to STANet, DASNet [17] also used
a Siamese network and spatial-temporal attention

modules. However, DASNet used a different ap-
proach: Spatial Attention Mechanism (SAM) and
Channel Attention Mechanism (CAM). Furthermore,
DASNet proposed an auxiliary loss function called
Weighted Double Margin Contrastive (WDMC) loss
to address the imbalance problem in the CD datasets.
Unlike STANet and DASNet, SNUNet [18] used
a densely connected siamese network, leveraging
much skip connection. Also, SNUNet proposed an
enhanced version of the attention module called the
Ensemble Channel Attention Module (ECAM).

On the other hand, our proposed method uses
a Transformer-based vision backbone instead of a
CNN-based one. Specifically, we use a hierarchical
vision Transformer, a versatile vision backbone for
down-stream tasks like image segmentation and de-
tection. We chose Transformer because it recently
outperformed state-of-the-art CNN on the ImageNet
[8] classification task.

2.2. Transformer-based CD Method

Recently, Transformers [5], a state-of-the-art
model in Natural Language Processing (NLP), has
gained increasing interest among Computer Vision
(CV) researchers. The scalability of Transformers
enables it to outperform CNN backbone [7] on
image classification tasks. Therefore, Vision Trans-
former (ViT) [6] becomes a new standard model in
CV. There are some previous works on CD meth-
ods that use ViT as the vision backbone, includ-
ing Bitemporal Image Transformer (BIT) [12] and
ChangeFormer [13].

BIT used a hybrid approach, combining CNN
and ViT for solving CD tasks. Similar to the pre-
vious CNN-based CN method, BIT also uses a
siamese network with a ResNet backbone for ex-
tracting salient features from bitemporal input im-
ages. The resulting feature maps are then processed
by the Transformer encoder. However, the feature
maps need to be converted into tokens in order for
Transformer can process them. The resulting refined
features are then processed by the prediction head to
build the change map. Unlike BIT, ChangeFormer
[13] use Pyramid Vision Transformers (PVT) [9],
a specialized ViT variant for solving down-stream
vision tasks. Furthermore, it used an MLP decoder
to generate the change map.

Our proposed method uses a similar architecture
as the ChangeFormer. However, we add a locality
mechanism to replace the two consecutive MLP
components after the attention calculation. This re-
placement is to improve the changed region bound-
aries on the change map. This modification relies
on the fact that individual image pixels are affected



40 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 16,
issue 2, June 2023

by the surrounding pixels. Furthermore, we also
use Lp distance feature fusion instead of a simple
subtraction operation like in ChangeFormer. Also,
we replace the MLP decoder using Lightweight Con-
volution Decoder to support the locality induction on
the encoder.

3. Proposed Method

In this paper, we propose a novel CD method
called LocalCD. This section presents detailed in-
formation about the method.

3.1. Overall Architecture

LocalCD receives two input images x1,x2 ∈
RH×W×3, which represent pre-image at time t1 and
post-image at time t2. It then returns the change
map M ∈ RH×W where H and W denote the
height and weight of the images. The architecture
of LocalCD comprises three main modules: encoder,
feature fusion, and decoder. The encoder extracts the
important feature from both images in 4 different
stages. Each stage extracts features at a different
scale. The spatial dimension goes decreases as the
stage goes deeper. In contrast, the feature dimension
increases following the stage level. The encoder pro-
duces two feature maps: F1 and F2, each for input
image x1 and x2. Each feature map is composed
of 4 sub-feature maps representing different feature
scales F1

1, F2
1, F3

1, and F4
1 for F1. On the other hand,

F2 contain F1
2, F2

2, F3
2, and F4

2. Both feature maps
are then fused in the feature fusion module. Finally,
the fused feature maps are then decoded into the
change map. Fig. 2 illustrates the overall architecture
of LocalCD.

3.2. Pyramidal Transformer Encoder (PTE)

The main goal of the encoder is to extract fea-
tures given two input images. To achieve this, we
leverage a Siamese structure with shared weights.
The PTE will process each stream in the Siamese
network. This PTE incorporates the pyramidal struc-
ture within 4 stage levels, following the prior art [9].
At each stage, PTE consists of the Transformer block
and patch merging. This structure has been proven
to be very effective for visual backbone [7].

Consider a single input image of size H×W×3.
At the first stage, the image is partitioned into HW
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patches, each having size 4×4×3. These patches are
then flattened into HW

42 × 3 embedding sequence. A
linear projection is then applied into the feature di-
mension of the sequence to make feature embedding
of size HW

42 ×C1. This embedding is then processed

by attention block, and the output is then reshaped
into a feature map F 1 of size H

4 × H
4 × C1. This

process continues for all stages, resulting in feature
maps of size H

8 × H
8 × C2, H

16 × H
16 × C3 and

H
32 × H

32 × C4 for stage 2, 3, and 4 respectively.
In general, at stage-i, the feature map Fi−1 ∈

RHi−1×Wi−1×Ci−1 are partitioned into Hi−1Wi−1

P 2
i

patches using patch size Pi where Pi = 2 × Pi−1.
The feature dimension of each patch is then flattened
and projected into an arbitrary Ci dimensional em-
bedding; this process is called Patch Embedding.
The embedding is then processed by the Transformer
block resulting in a new feature Fi.

Overlap Patch Embedding. Different from text,
an image is grid-shaped data. Unfortunately, Trans-
former architecture is explicitly designed to process
data sequences. Therefore, the image needs to be
converted into sequences before processing. ViT [6],
and PVT [9] incorporate non-overlap patch embed-
ding for simplicity. In contrast, we use overlap patch
embedding to the image into a sequence of image
patches. Technically, we apply a convolution using
a kernel size similar to the patch size. We use a
stride size smaller than the kernel size to achieve
the overlap effect. Furthermore, we project the chan-
nel dimension from 3 into an arbitrary dimension
C1 through the same convolution operation. The
resulting patches are then flattened to create a token
sequence.

Transformer Block. Each stage of the encoder
comprises Li layers of Transformer blocks. The
Transformer block is the main component of the
encoder. It consists of an attention mechanism and
two consecutive feed-forward networks. This block
receives feature maps as visual token sequences and
then refines its representation according to token
interaction. To avoid quadratic computation com-
plexity, we apply Spatial Reduction Attention (SRA)
[9], replacing the Multi-head Self Attention (MSA)
in the original ViT. This type of attention effectively
lowers the computation complexity by reducing the
spatial dimension of the matrix query and value
before the attention takes place.

Suppose the sequence of tokens X = {Xj ∈
Rd|j = 1, · · · , N} at stage-i where d = Ci × P 2

i

is the embedded dimension and N = HiWi

P 2
i

is the
number of tokens. It is clear that X ∈ RN×d. The
attention score is then calculated as follows:

Z = Softmax(
QKT

√
d

)V. (1)

where Q = XWQ, K = X̂WK and V = X̂WV

represent matrix query, key and value respectivelly.
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Figure 2. LocalCD consists of the encoder, feature fusion, and the decoder.

d is the number of attention heads. X̂ ∈ R
N
Ri

×d is a
reduced version of X after applied reshape operation
with Ri reduction ratio and a linear layer. RSA
computational complexity is R2

i , which is lower than
the original MSA, which has N2.

Patch Merging. Patch Merging is responsible for
decreasing the spatial dimension of the input images
while increasing its feature dimension. Technically,
it takes the refined visual tokens produced by the
Transformer block and then reshapes them into grid-
shaped data similar to the original input images.
Each 2 × 2 image patch is concatenated along the
feature dimension. Finally, a linear layer is applied
to reduce the feature dimension in half. This strategy
guarantees that the resulting spatial size is reduced
in half while the feature dimension doubles.

3.3. Locality Feed-forward

The original Transformer [5] follows the atten-
tion operation with two layers of MLP. These layers
force the Transformer to learn a richer representation
by expanding the intermediate dimension. The first
MLP expands the feature dimension by a factor
of 4, while the second MLP restores the feature
to the original dimension. This scenario improves
the capability of the Transformer to model long-
range interaction further. Despite being excellent at
modeling long dependencies between visual tokens,
Transformer lacks local connection. One reason is
that it treats images as a sequence instead of grid-
shaped data. However, a pixel in natural images like
remote sensing images is much affected by neighbor
pixels.

Inspired by [14], we impose the locality into
the Transformer architecture by replacing the feed-
forward network with two consecutive 1× 1 convo-
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Figure 3. Locality Feed-forward imposes the locality mechanism by performing DW convolution on the reshaped feature
maps

lutions. These convolutions can mimic the effect of
expanding dimensions like in MLP. However, they
do not impose a spatial relationship due to using the
1×1 kernel. To solve this issue, we insert an efficient
depth-wise convolution (DW) with 3×3 kernel [19].
We also add a combination of BatchNorm [20] and
hswish [21] activation after each 1×1 convolution to
improve the locality induction further. We also add
a Squeeze & Excitation [22] layer after the DW
convolution. Figure 3 illustrates the locality feed-
forward.

Suppose Z ∈ RN×d is a sequence of tokens
returned by the attention mechanism. First, the token
sequence is reshaped into a 2D feature map to form
grid-shaped data through a Seq2Img operation. This
process is denoted as:

Ẑ = Seq2Img(Z), (2)

where Ẑ ∈ R
Hi
Pi

×Wi
Pi

×Ci . The DW convolution is
then applied to the resulting 2D feature map Ẑ.
Formally it could be represented as

Ŷ = f(f(Ẑ⊛ Ŵ1)⊛Wd)⊛ Ŵ2, (3)

where Ŵ1 ∈ Rd×λd×1×1, Ŵ2 ∈ Rλd×d×1×1 are
1 × 1 convolution with λ expansion ratio. Here,
Wd ∈ Rλd×1×k×k is a DW convolution with k× k
kernel and f(.) is a nonlinear activation function.
⊛ is element-wise multiplication. The result is then
converted back into a sequence

Y = Img2Seq(Ŷ). (4)

where Img2Seq is simply a reshaping operation that
arranges the grid-shaped data into a sequence of
patches.

3.4. Feature Fusion

The feature fusion fuses the feature maps Fi
1

and Fi
2 produced from the encoder. Unlike Change-

Former [13], we use Lp distance to fuse two feature
maps into a single feature map. The fusion operation
is defined as:

F̂i = |Fi
1 − Fi

2| (5)

where Fi
1 is feature map from image x1 on stage-i

and Fi
2 is feature map from image x2 on stage-i.

3.5. Lightweight Convolution Decoder

The decoder takes the multi-scale fused feature
maps F̂1 ∈ RH

4 ×W
4 ×C1 , F̂2 ∈ RH

8 ×W
8 ×C2 , F̂3 ∈

RH
16×

W
16×C3 , and F̂4 ∈ RH

32×
W
32×C4 and then con-

vert it into the change map. Unlike ChangeFormer
[13] that used an MLP decoder, we instead use
Lightweight Convolution Decoder (LCD) to support
the locality mechanism imposed by the encoder. Fig.
4 illustrates the LCD module.

We apply 1× 1 convolution to each feature map
F̂i to project its feature dimension into an arbitrary
dimension D. We then applied upsample operation
to resize the feature map to the same size as the
original input image H ×W . We used the different
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Figure 4. Lightweight Convolution Decoder (LCD) takes the feature maps from the encoder and generates the change
map through several convolutions and upsample operations

upsample factor based on the scale of the feature
map, 32×, 16×, 8×, and 4× for F̂1, F̂2, F̂3, and F̂4

respectively. These operations resulting four refined
feature maps F̄1, F̄2, F̄2, F̄4 ∈ RH×W×D. Formally,
it can be formulated as follow:

F̄i = Upsample(H,W )(Conv(F̂i)). (6)

We then concatenated the feature maps along
feature dimensions, resulting in a single feature map
with dimension 4D. We then project the feature
dimension into 2 using 1 × 1 resulting in the final
feature map F̄ ∈ RH×W×2. These operations can be
formulated as follows:

F̄ = Conv(Concat(F̄1, F̄2, F̄3, F̄4)). (7)

4. Experiments

4.1. Dataset

We use two public datasets in the experiments,
CDD [3] and LEVIR-CD[16]. The CDD is a set
of remote-sensing images used for change detection
tasks. It consists of two images: a pre-image and
a post-image, along with the ground truth change
map. Each image has 256 × 256 pixels in size.
The images are captured using various sensors, in-
cluding optical and synthetic aperture radar (SAR)
sensors. The CDD dataset contains several subsets
with different characteristics, including urban, rural,
and natural environments, and images captured at
different resolutions and with other imaging condi-
tions. The dataset includes photos with gradual and
abrupt changes, such as the growth of vegetation,

construction of buildings, and natural disasters. CDD
provides training, validation, and testing sets. The
total of images in each set is 10,000 for training,
3,000 for validation, and 3,000 for testing.

LEVIR-CD consists of 637 pairs of high-
resolution images of size 1024×1024. The pairs are
in the same area within 5 to 14 years. The images
cover various buildings, such as villas, apartments,
garages, and warehouses. The photos are taken from
Google Earth in different regions that sit in several
cities in Texas of the US, including Austin, Lakeway,
Bee Cave, Buda, Kyle, Manor, Pflugervilletx, Drip-
ping Springs, etc. LEVIR-CD comes with a ground
truth binary change map of a pair of images. The
dataset is then divided into 445, 64, and 128 image
pairs for train, validation, and testing, respectively.

4.2. Experimental Setup

We implemented LocalCD using the OpenCD
[25] toolkit. It is a CD framework built on MMSeg-
mentation [26], a widely adopted PyTorch frame-
work for image segmentation tasks. We used a fixed
patch size of 4 with various strides in the Overlap
Patch Embedding. The strides are 4, 2, 2, and 2 for
stages 1, 2, 3, and 4. We used the Transformer block
layer Li = {3, 4, 6, 3} for stage-i 1, 2, 3, and 4,
respectively. Furthermore, we used the embedding
size Ci = {64, 128, 320, 512}. We used the number
of heads 1, 2, 5, and 8. Also, we used a reduction
ratio Ri 8, 4, 2, and 1.

We augmented the input images, including the
ground truth change map using the standard image
augmentations such as random rotation (at maximum
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Table 1. Evaluation results on CDD and LEVIR-CD datasets (all values are in percentage (%))

Method CDD LEVIR-CD

F1 IoU OA Acc P R F1 IoU OA Acc P R

FC-EF [23] 73.09 62.52 91.22 68.29 84.61 68.29 90.18 83.36 98.47 88.98 91.47 88.98
BIT [12] 71.37 61.03 91.28 66.06 88.57 66.06 90.43 83.69 98.34 93.67 87.68 93.67

SNUNet [18] 92.1 85.95 96.82 90.08 94.43 90.08 88.16 78.83 98.82 50.00 95.80 50.00
STANet [16] 93.62 44.00 88.00 50.00 88.00 50.00 87.26 77.40 98.66 50.00 95.80 50.0

SwinSUNet [24] 90.52 83.51 96.27 87.71 93.97 87.71 92.42 86.69 98.81 91.32 93.59 91.32
ChangeFormer [13] 95.00 90.73 97.95 93.77 96.33 93.77 91.97 86.00 98.71 91.53 92.42 91.53

LocalCD (ours) 95.48 91.57 98.12 94.81 96.19 94.81 92.43 86.70 98.80 91.41 93.51 91.41

(a) (b)

Figure 5. Plot of training and validation loss on (a) CDD dataset, (b) LEVIR-CD dataset

180◦), fixed-size random crop, and horizontal or ver-
tical flip. We used these augmentations techniques
at 50% probability. We normalized the image pixels
using the standard normalization used for the Ima-
geNet [8] dataset with [123.675, 116.28, 103.53] as
mean and [58.395, 57.12, 57.375] as standard devia-
tion, each for channel red, green, and blue respec-
tively.

We used the AdamW [27] optimizer with the
learning rate 6 × 10−5, β1 0.9, β2 0.999. To avoid
overfitting, we used a weight decay of 0.01. We
trained the model on a single GPU V100 for 50,000
iterations using a batch size 16. Also, We used
a polynomial learning rate scheduler [28] with a
linear warmup for the first 1,500 iterations. To
speed up the model’s convergencies, we initialized
the encoder’s weights using pre-trained weights of
SegFormer [11], a hierarchical transformers model
for segmentation tasks. The models are trained to
minimize the binary cross-entropy loss.

5. Result and Discussion

5.1. Quantitative Evaluation

We provide the experiment result in Table 1. We
evaluate the method using various metrics commonly
used to evaluate segmentation tasks like F1-score,
Intersect over Union (IoU), Overall Accuracy (OA),
Accuracy, Precision (P), and Recall (R). This ta-
ble shows that LocalCD outperforms existing CD
methods on CDD and LEVIR-CD datasets on those
evaluation metrics. Specifically, it consistently out-
performs the baseline CD method, ChangeFormer
[13], on most evaluation metrics. The result proves
the effectiveness of our proposed method.

During training, we record the training and val-
idation loss. Fig. 5 displays the training and val-
idation loss during the model training on CDD
and LEVIR-CD datasets. From the graphic, we can
see that the training losses consistently decreases
as the training iteration increase. Furthermore, the
validation losses are reduced smoothly following the
corresponding training loss.
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Figure 6. Comparison of predicted change map visualization between LocalCD and other CD methods

Table 2. Ablation study for verifying the effectiveness of an individual component of LocalCD (all values are in
percentage (%).

No Locality Feed-forward Lp Distance Fusion LCD F1 IoU OA Acc P R

1 ✗ ✗ ✗ 87.58 79.26 95.27 83.96 92.49 83.96
2 ✓ ✗ ✗ 91.17 84.5 96.42 89.55 92.99 89.55
3 ✗ ✗ ✓ 89.82 82.46 95.96 87.45 92.66 87.45
4 ✓ ✓ ✓ 91.92 85.67 96.77 89.73 94.48 89.73

5.2. Qualitative Evaluation

We also perform a qualitative evaluation to sup-
port the quantitative one. We randomly select four
samples from the test set and perform inference on
them. Fig. 6 shows the visualization of the predicted
change map for various CD methods on the test set.
The figure shows that the predicted change maps
of LocalCD have better changed-region boundaries
compared to other CD methods, including Change-
Former. Specifically, the results of LocalCD are
less contain the segmentation artifacts, proving our
proposed method’s effectiveness.

5.3. Ablation Study

We perform an ablation study to verify the ef-
fectiveness of an individual component of LocalCD.
We train each model for 10,000 iterations to reduce
the training time while keeping all configurations
the same. Table 2 summarizes the results of ablation
experiments.

Row numbers 1 & 2 on the table examine the
effectiveness of the Locality Feed-forward compo-
nent. It is clear from the result that Locality Feed-
forward improves all evaluation metrics. In contrast,

row number 3 examines the effectiveness of the
LCD component. Compared to row number 1, it is
also clear from the result that the LCD component
improves all evaluation metrics. Finally, the last row
examines the effectiveness of combined components,
including the Locality Feed-forward, Lp Distance
Fusion, and LCD. The combination of all these
components yields the best evaluation result.

5.4. Comparison with ChangeFormer

The experiment result shown in Table 1 proves
the superiority of LocalCD compared to Change-
Former in various evaluation metrics. We also com-
pare the number of parameters and floating-point
operations for a fair comparison. Table 3 shows the
number of parameters and floating-point operations
for both methods. Similar to the ablation study,
the results in table 3 are also trained for 10,000
iterations. Despite LocalCD having a little higher
parameters and floating point operations compared
to ChangeFormer, the margin is not significant com-
pared to the increased performance of LocalCD. To
verify this claim, we create a reduced version of
LocalCD, called LocalCD-Reduced, by decreasing
the number of Transformer blocks on each stage
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(a) (b)

Figure 7. Plot of F1 score during training on the test set (a) CDD dataset, (b) LEVIR-CD dataset

into {2, 2, 2, 2}. Although the LocalCD-Reduced has
lower parameters and floating-point operations than
ChangeFormer, it has a higher F1 score.

During training, we regularly perform evalua-
tions on the test set and record the evaluation result.
Fig. 7 shows the plot of the F1 score on CDD
and LEVIR-CD datasets. From the figure, we can
see that LocalCD consistently outperforms Change-
Former.

Table 3. The number of parameters and floating point op-
erations comparison between LocalCD and ChangeFormer
using 256× 256× 6 of input size.

Method # Parameter GLOPs F1

ChangeFormer 24.72 M 10.35 87.89
LocalCD (ours) 24.9 M 10.45 90.61

LocalCD-Reduced (ours) 13.76 M 5.95 90.12

6. Conclusion

In this paper, we proposed LocalCD, a novel
CD method that addresses the issue of segmentation
artifacts that arise on the prediction change map of
ChangeFormer. LocalCD solves this issue by im-
posing the locality mechanism into the Transformer
architecture used by ChangeFormer. Although the
ChangeFormer can model long-range dependencies
between visual tokens on the natural images, it still
lacks a locality mechanism. This problem can cause
imperfectness in the changed region boundaries of
the predicted change map. Extensive experiments on
CDD and LEVIR-CD demonstrated the effectiveness
of our proposed method. It outperforms the baseline

CD method with lower or comparable parameters
and floating point operations.
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