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Abstract

Assessment of cardiac function using echocardiography is an essential and widely used method. Assessment
by manually labeling the left ventricle area can generally be time-consuming, error-prone, and has inter-
observer variability. Thus, automatic delineation of the left ventricle area is necessary so that the assessment
can be carried out effectively and efficiently. In this study, encoder-decoder based deep learning model for
left ventricle segmentation in echocardiography was developed using the effective CNN U-Net encoder and
combined with the deeplabv3+ decoder which has efficient performance and is able to produce sharper and
more accurate segmentation results. Furthermore, the Atrous Spatial Pyramid Pooling module were added to
the encoder to improve feature extraction. Tested on the Echonet-Dynamic dataset, the proposed model gives
better results than the U-Net, DeeplabV3+, and DeeplabV3 models by producing a dice similarity coefficient
of 92.87%. The experimental results show that combining the U-Net encoder and DeeplabV3+ decoder is
able to provide increased performance compared to previous studies.
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1. Introduction

Assessment of cardiac function on echocardiog-
raphy is generally done by observing the value of the
left ventricle ejection fraction ratio (LVEF). Manual
and semi-automatic assessment requires delineation
of left ventricle area at both the end of contraction
(end systole) and the end of relaxation (end diastole)
to obtain the value of the LVEF ratio [1]. Manual
delineation of the left ventricular area can be time-
consuming because it needs to be done carefully and
is inconsistent due to high inter-observer variance
[2–4]. Thus, automatic delineation of the left ven-
tricular area is necessary so that the assessment of
cardiac function on echocardiography can be carried
out effectively and efficiently.

Automated depiction of the left ventricle area
can be performed by segmentation using deep learn-
ing. Models with the type of encoder-decoder are
models that are widely used and many provide good
performance results in image segmentation work [5–
8]. U-Net is a Deep Learning model with an encoder
and decoder form that is specifically designed to

carry out image segmentation work, especially in the
biomedical field. The encoder part consists of the
composition of the Convolutional Neural Network
(CNN) which provides information for classification.
The encoder in U-Net is claimed to be able to
extracted features efficiently. The decoder contains
the combination of features of the encoder through
the skip connections and the expansion of the image
size to restore the original size, so that the image
segmentation is formed [6]. U-Net and modifica-
tion have been widely used in various biomedical
images such as liver, polyp, and pancreas [9–12].
Although it has been widely applied to various
types of medical data and has an efficient encoder,
some modifications to improve U-net performance
are done by maintaining the encoder and changing
the decoder including the skip connections[13–16].
This is because the combination of features between
encoder and decoder through skip connection can
actually limit the performance of the model, Because
there is no guarantee that even though the size of the
features between encoder and decoder is the same,
the two features that are combined have the same
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semantics between the two [13].
Another model with Encoder-Decoder architec-

ture is Deeplabv3+. Chen et al. [7] develops a model
from the previous version, namely Deeplabv3 [17]
by providing a simple but efficient decoder so that
it can produce sharper and more accurate segmen-
tation. One of the advantages of Deeplabv3 is the
use of Atrous Spatial Pyramid Pooling (ASPP) that
is able to extract features on different scales.

In supporting research related to the left ventricle
segmentation in echocardiography, Ouyang et al. [4]
provides dataset of echocardiographic image called
Echonet-Dynamic, which contains 10030 echocar-
diographic videos and anotation of segmentation
objects carried out by experts. Not only providing
dataset, Ouyang et al. [4] also conducts experi-
ments by segmentation of the left ventricle using the
Deeplabv3 model with a resnet-50 backbone. As a
result, by using the Dice Similiarity Coefficient eval-
uation measurement, the model produced a value of
95%. The Dice Similiarity Coefficient calculation is
done by measuring overlapping between the results
of segmentation and the Ground Truth.

In this study, a Deep Learning model for the
left ventricle segmentation in echocardiography will
be developed by combining the encoder from U-
Net with the ASPP and Decoder modules from
Deeplabv3+. The ASPP module will be used to
improve the ability of the model in extraction of
features on objects that vary in the left ventricle
when the systole and diastole. U-Net encoder is used
to extract features efficiently and used decoder from
Deeplabv3+ which has a simple but efficient design
to avoid semantic gap problems, improve model
efficiency, and also has the ability to produce more
sharper and accurate segmentation. The main con-
tributions of this study are summarized as follows:

• Developed a model that is more efficient than
the original model used as encoder and de-
coder in this study, U-Net and DeeplabV3+
by having fewer parameters.

• Compared the proposed model with the U-
Net, DeeplabV3+ and DeeplabV3 models
from [4].

2. Proposed Model

The model architecture used in this study is in
the encoder-decoder form with the encoder used to
extract features and the decoder used to produce
segmentation results. The encoder used is a CNN
encoder taken from U-Net and claimed to be able
to extract features efficiently. At the end of the
encoder, ASPP is added so that the model is able to
extract features at different scales. This is useful for

recognizing objects well during systole and diastole
because the two objects have different sizes.

Figure 1 is an illustration of the U-Net architec-
ture, where there are skip connections between low
level features from encoder to decoder. Furthermore,

Figure 1. The architecture of U-Net model (reproduced).

the model architecture in this study does not use
the decoder from U-Net. This is because in U-Net,
combining features between encoder and decoder
via skip connection can limit model performance
because there is semantic gap between encoder and
decoder, also there is no guarantee that without
using a skip connection can improve the model
performance. So the model architecture in this study
uses a decoder from DeeplabV3+ which can produce
sharper and more accurate segmentation.

2.1. Encoder

The encoder used in the proposed model is the
U-Net encoder, which contains five CNN blocks. In
one CNN block, it contains two 3x3 convolutions
followed by ReLU activation function. At the end
of the block there is a 2x2 Max Pooling operation
for downsampling (reducing image resolution). The
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number of channels in the first block on the encoder
has a value of 64, then the number of channels will
double each subsequent block [6].

U-Net encoder is claimed to be able to efficiently
extract high-level features. Furthermore, the encoder
in the proposed model will utilize the ASPP module
from DeeplabV3+ [7]. ASPP can capture context
information at different scales. The use of this mod-
ule is used with the aim that the model can work
well on systole and diastole objects that have various
sizes. The ASPP module contains atrous filters with
different sizes. The rates used are 6, 12, and 18.

Figure 2 is an illustration of the encoder used
in this study. The leftmost of the figure is the CNN
block. The rightmost of the figure is the encoder
block module with a filter size of 64 at the initial
block, then doubling in each subsequent block. the
ASPP module is added at the end of the encoder.

Figure 2. Encoder Block illustration.

2.2. ASPP

Atrous Spatial Pyramid Pooling (ASPP) has the
ability to extract and provide multi-scale information
[7, 17]. ASPP uses three 3x3 dilated convolutions,
one 1x1 convolution, and global average pooling in
parallel. Each convolution has a different dilation
ratio, followed by batch normalization and activation
of the ReLU function. Next, the four parallel con-
volutions and global average pooling are combined,

finally the 1x1 convolution is carried out. Figure 3
is an illustration of the ASPP module, where the
dilation ratio is 6, 12, and 18. In this study, ASPP

Figure 3. Atrous Spatial Pyramid Pooling (ASPP) Block
illustration.

is used at the end of the encoder to improve the
encoder in extracting features by providing multi-
scale information.

2.3. Decoder

The decoder used in this study is a decoder
from DeeplabV3+. There are two features from the
encoder that enter the decoder, namely the high level
feature from the end of the encoder and the low level
feature from the start of the encoder. Furthermore,
the number of channels that enter the decoder is
adjusted by 1x1 convolution. The high-level features
are then upsampled by bilinear interpolation with a
factor of 4 and combined with the low-level features.
Finally, the features that have been combined are
then carried out a 3x3 convolution and upsample by
performing a bilinear interpolation with a factor of
4 to get the segmentation results [7]. In general, the
proposed model architecture is illustrated in Figure
4. The low level feature given to the decoder is the
second block of the encoder, which has a total of
128 channels and is then adjusted or reduced by 1x1
convolution to 48.
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Figure 4. The architecture of the Proposed Model.

3. Experiments

3.1. Dataset

The dataset used for the experiments in this study
is the Echonet-Dynamic dataset [4]. This dataset
contains 10030 videos with each video having a
height and width of 112x112. In order to be used
in left ventricle segmentation, frame extraction was
performed for each end systole and end diastole
based on annotations of 20048 images. From the
available images, the data is separated into 3 parts
with 14920 images used for training, 2576 images
for validation, and 2552 images for testing. This
study uses this setup without changing the compo-
sition of each data.

This study also uses another public dataset that
is used to test the model, namely the CAMUS
dataset.[3]. This dataset contains 2-dimensional
echocardiography images of apical two-chamber
view (A2C) and apical four-chamber view (A4C)
taken from 500 patients. In this study, this dataset
is used to establish the versatility of the proposed
model because it has various image qualities, from
good quality images with a clear left ventricle to
poor quality images with an unclear and blurry left
ventricle[18].

3.2. Training Process

The training model that has been built is carried
out in the same way based on [4]. There are only
differences in optimizer, batch size, and learning
rate. The training process is carried out using Nvidia
1650 with 4GB of memory. In general, the following
hyperparameters are defined for training the pro-
posed model: In this study, no pretrained weights
were used in the encoder.

Table 1. Hyperparameters used in Training scenario.

Parameter Value
Epoch 50

Optimizer Adam
Batch Size 8

Learning Rate 1e-4
Loss Function Binary Cross Entropy

3.3. Evaluation

The evaluation metric used to measure model
performance is the dice similarity coefficient (DSC).
This measurement is carried out by calculating the
overlapping pixels between the segmentation results
and the ground truth annotation. DSC measurement
is defined as follows:

DSC(x, y) =
2(x ∩ y)

x+ y
(1)

where x is the segmentation result and y is the
ground truth annotation, the equation calculates the
value of twice the number of intersecting pixels
divided by the number of the two images. Values in
DSC are in the range 0 to 1, where as the DSC value
gets closer to 1, the more similar the segmentation
results are to the ground truth annotation [19].

4. Results and Discussion

In this study evaluation were carried out by
comparing the DSC values performed by the models.
The data used in training, validation, and testing
is used based on the train-validation-test split. The
composition of the train-validation-test data on the
Echonet-Dynamic dataset is defined by default[4].
So that model performance can be compared with
previous studies in an easy and fair way. This study
uses a performance test scenario on test data with
the same composition as set by default and was also
used in previous studies, so the train-validation-test
data used is the same. Using other scenarios (e.g.
cross-validation) can result in unfair performance
comparisons with other studies.

The performance of the proposed model is com-
pared with the U-Net, DeeplabV3+, and DeeplabV3
models from [4]. The evaluation was carried out
by comparing the DSC values at end systole, end
diastole, and the overall values of both. The U-Net
and DeeplabV3+ models were previously trained and
tested on the Echonet-Dynamic dataset and the back-
bone used on DeeplabV3+ is Resnet101. Test results
on DeeplabV3 are taken based on [4]. Overall, data
pre-processing is done in the same way as [4], so
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that the data used during training and testing are all
the same.

Table 2 shows the DSC values produced by the
four models in the Echonet-Dynamic test data. In
end systole object test, the proposed model produces
the best value with a value of 0.9158. The U-Net,

Table 2. Comparison of segmentation results between the
proposed model and the DeeplabV3, DeeplabV3+, and U-
Net models. The results from DeeplabV3 are taken based
on [4].

Model Dice Similiarity Coefficient
Systole Diastole Overall

DeeplabV3[4] 0.903 0.927 0.915
DeeplabV3+ 0.9080 0.9292 0.9210

U-Net 0.9133 0.9343 0.9262
Proposed Model 0.9158 0.9367 0.9287

DeeplabV3+, and DeeplabV3 models produce DSC
values of 0.9133, 0.9080, and 0.903 respectively. In
end diastole object test, the proposed model is also
able to give the best value with a value of 0.9367.
In descending order, the U-Net, DeeplabV3+, and
DeeplabV3 models from [4] produce DSC values
of 0.9343, 0.9292, and 0.927 respectively. Further-
more, the proposed model produces the highest DSC
value compared to the other three models with an
overall value of 0.9287. The U-Net model produces
0.9262 values, the DeeplabV3+ model generates
0.9210 values, and the lowest is DeeplabV3 from
[4] with 0.915 values. This shows that the proposed
model using encoder from U-Net and decoder from
DeeplabV3+ is able to provide increased perfor-
mance compared to the two models.

Table 3 displays the total number of parameters
used by the four models. Especially when compared
to the U-Net and DeeplabV3+ models with 39.39M
and 59.33M parameters respectively, the proposed
model has 28.01M parameters. This shows that the
proposed model is able to work more efficiently
because it provides better performance results and
uses parameters which is less than the U-Net and
DeeplabV3+ models. The proposed model also has
the lowest number of parameters compared to the
other three models because the DeeplabV3-Resnet50
model has 39.6M parameters.

Table 3. Comparison of the number of parameters between
the proposed model and the DeeplabV3+ and U-Net mod-
els.

Model Number of Parameters (Million)
DeeplabV3 39.6M

DeeplabV3+ 59.33M
U-Net 39.39M

Proposed Model 28.01M

Table 4 shows the running time when doing
inference or segmentation for one image. The pro-
posed model performs segmentation with the short-
est time compared to unet and deeplabv3+. The
proposed model requires 0.00227 seconds to per-
form segmentation for one image, while the U-
Net model requires 0.00256 seconds, the DeeplabV3
model from [4] requires 0.00256 seconds and the
DeepLabV3+ model requires 0.00907 seconds. this
shows the effectiveness of the model in terms of
model size and the time needed to perform segmen-
tation.

Table 4. Comparison of the running time of segmenta-
tion for one image between the proposed model and the
DeeplabV3+ and U-Net models.

Model Running Time (Second)
DeeplabV3[4] 0.00596
DeeplabV3+ 0.00907

U-Net 0.00256
Proposed Model 0.00227

Figure 5 is an example of segmentation results
from the proposed model, DeeplabV3+, and U-Net.
Figure (a) shows the input or the original image,
(b) are the ground truths, and (c) to (e) are the
segmentation outputs of the DeeplabV3+, U-Net,
and proposed model respectively. Based on the four
results shown, the proposed model can produce seg-
mentation similar to ground truth and better than the
results from DeeplabV3+ and U-Net.

Figure 5. Segmentation results from the DeeplabV3+, U-
Net, and proposed models. (a) image input, (b) ground
truth, and (c) to (e) are the output segmentation from
DeeplabV3+, U-Net, and the proposed model.

Table 5 is the test result on the CAMUS dataset.
In contrast to the Echonet-Dynamic dataset, this



168 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 16,
issue 2, June 2023

Table 5. Comparison of segmentation results between
the proposed model and the DeeplabV3 from [4],
DeeplabV3+, and U-Net models on the CAMUS dataset.

Model Dice Similiarity Coefficient
Systole Diastole Overall

DeeplabV3[4] 0.8781 0.9081 0.8963
DeeplabV3+ 0.8856 0.9164 0.9041

U-Net 0.9037 0.9257 0.9170
Proposed Model 0.9006 0.9207 0.9128

dataset has various image quality from good qual-
ity images with a clearly visible left ventricle to
poor quality images with an unclear and blurry left
ventricle. The proposed model is able to produce
a DSC value of 0.91287 for the overall test data.
With the end systole object test produces a value
of 0.9006 and the end diastole object test produces
a value of 0.9207. These results outperform the
DeeplabV3+ model performance which produces a
DSC value on the overall test data of 0.9041 and
DeeplabV3 from [4] with a value of 0.8963, but
produces a slightly lower value than U-Net with
a DSC value of 0.9170. This shows that although
the proposed model is capable of providing good
results, it cannot outperform the performance results
of the U-Net model on CAMUS datasets which have
various image qualities.

5. Conclusion

In this study, an encoder-decoder model was
developed for left ventricle segmentation in echocar-
diography using encoder from U-Net and decoder
from DeeplabV3+ and adding ASPP to the encoder.
The proposed model is then trained and tested using
the Echonet-Dynamic dataset and produces a Dice
Similiarity Coefficient value of 0.9287. These results
were compared with the U-Net, DeeplabV3+, and
DeeplabV3 models. In general, the proposed model
proves to be more efficient than the other three
models because it produces the best performance
with the least number of parameters. The proposed
model can also be used as a tool for cardiac function
assessment.
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